节点文献

基于改进的K-means聚类方法的多站数据关联异常检测

Multistation Data Correlation Anomaly Detection Based on Improved K- means Clustering Method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邵开霞陈淡泊周晓峰

【Author】 Shao Kaixia;Chen Danbo;Zhou Xiaofeng;Department of Data Minging,Hohai University;

【机构】 河海大学

【摘要】 在传统的水文时序数据研究中,我们通常只关注单个测点的时序数据,这不仅造成数据大量的冗余,还大大增加了工作的繁琐度。本文针对时间序列数据聚类的统计特征和结构特征,基于滑动窗口特征提取算法提出了改进的K-means聚类方法,来探求水文时间序列数据是否在空间上存在某种关联,并在此基础上对多水文站数据进行关联异常检测。

【Abstract】 In the study of traditional hydrological time-series data, it usually only focuses on a single point of time-series data. This not only causes a large number of redundant data, but also greatly increases the complicated degree of work. In this paper, according to the statistical characteristics and structure features of time-series data clustering, K-means clustering method which is based on feature extraction algorithm of sliding window is put forward to explore whether there is a correlation between hydrological time series data in the space, and anomaly detect the multiple hydrologic data on the basis of it.

  • 【文献出处】 微型电脑应用 ,Microcomputer Applications , 编辑部邮箱 ,2016年11期
  • 【分类号】TP311.13
  • 【被引频次】10
  • 【下载频次】203
节点文献中: 

本文链接的文献网络图示:

本文的引文网络