节点文献

基于相似样本及PCA的光伏输出功率预测

PREDICTION OF OUTPUT POWER OF PHOTOVOLTAIC BASED ON SIMILAR SAMPLES AND PRINCIPAL COMPONENT ANALYSIS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 廖卫强张认成俞万能王国玲

【Author】 Liao Weiqiang;Zhang Rencheng;Yu Wanneng;Wang Guoling;Fujian Province Key Laboratory of Naval Architecture and Marine Engineering;School of Marine Engineering,Jimei University;College of Mechanical Engineering and Automation,Huaqiao University;

【机构】 华侨大学机电及自动化学院集美大学轮机工程学院福建省船舶与海洋工程重点实验室

【摘要】 针对光伏输出功率预测问题,提出相似样本及PCA相结合的光伏输出功率预测模型。通过对光伏发电系统历史发电量数据和气象数据相关性分析,根据辐照度具有时间周期性和邻近相似性的特性选取参考样本,求取预测日与参考样本辐照度的欧氏距离并确定相似样本,采用PCA对相似样本提取主成分作为神经网络的输入,简化网络结构。仿真结果表明,相似样本算法可以有效地对不同天气类型的光伏输出功率进行预测,基于PCA的神经网络模型可进一步提高预测精度、泛化性能更好。

【Abstract】 This article provides a photovoltaic power output prediction model based on similar samples and principalcomponent analysis. Correlation analysis is made according to the historical data of photovoltaic power generation system’selectric energy production and meteorological data. Samples for reference are selected on the basis of solar radiation’speriodicity and adjacent similarity. Similar samples are obtained by calculating the Euclidean distance of the predicteddate and the reference samples about solar radiation. PCA is used to abstract principal components of similar samples,which is the input of neural network. All these factors combined can eliminate the correlation of input variables andsimplify the structure of network. The result of simulation presented that similar sample algorithm can effectively predictphotovoltaic power output under different kinds of weather. Neural network model based on principal component analysiscan further improve the accuracy and have better generalization.

【关键词】 光伏功率相似样本主成分分析(PCA)预测
【Key words】 photovoltaic powersimilar samplesPCAprediction
【基金】 福建省自然科学基金(2015J01639);福建省教育厅科技面上项目(JA15263);福建省自然科学青年基金(2013J05081);交通运输部科学技术研究计划(2015329815160)
  • 【文献出处】 太阳能学报 ,Acta Energiae Solaris Sinica , 编辑部邮箱 ,2016年09期
  • 【分类号】TM615
  • 【被引频次】22
  • 【下载频次】377
节点文献中: 

本文链接的文献网络图示:

本文的引文网络