节点文献

Hardware Architecture Design of Block-Matching and 3D-Filtering Denoising Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张昊刘文江王若琳刘涛戎蒙恬

【Author】 ZHANG Hao;LIU Wenjiang;WANG Ruolin;LIU Tao;RONG Mengtian;Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High-Speed Electronic Systems,Shanghai Jiaotong University;

【机构】 Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High-Speed Electronic Systems,Shanghai Jiaotong University

【摘要】 Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.

【Abstract】 Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.

【基金】 the National Natural Science Foundation of China(No.61234001)
  • 【文献出处】 Journal of Shanghai Jiaotong University(Science) ,上海交通大学学报(英文版) , 编辑部邮箱 ,2016年02期
  • 【分类号】TP391.41
  • 【被引频次】4
  • 【下载频次】59
节点文献中: 

本文链接的文献网络图示:

本文的引文网络