节点文献
Thymosin β4 Impeded Murine Stem Cell Proliferation with an Intact Cardiovascular Differentiation
【摘要】 Thymosin β4(Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells(m ESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on m ESCs. Target genes during m ESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the m ESCs-derived cardiomyocytes. It was found that Tβ4 decreased m ESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, m ESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these m ESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant ?-catenin. Under m ESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of m ESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed m ESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.
【Abstract】 Thymosin β4(Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells(m ESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on m ESCs. Target genes during m ESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the m ESCs-derived cardiomyocytes. It was found that Tβ4 decreased m ESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, m ESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these m ESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant ?-catenin. Under m ESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of m ESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed m ESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.
【Key words】 thymosin β4; murine embryonic stem cells; proliferation; cardiogenesis; patch clamp;
- 【文献出处】 Journal of Huazhong University of Science and Technology(Medical Sciences) ,华中科技大学学报(医学英德文版) , 编辑部邮箱 ,2016年03期
- 【分类号】R329.2
- 【被引频次】1
- 【下载频次】20