节点文献

基于遗传算法的BP神经网络计算岩溶水安全开采量

Calculation of karst water safe yield by using BP neural network based on genetic algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 马壮壮束龙仓季叶飞荆艳东鲁程鹏

【Author】 MA Zhuangzhuang;SHU Longcang;JI Yefei;JING Yandong;LU Chengpeng;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University;Songliao Water Resources Commission;

【机构】 河海大学水文水资源与水利工程科学国家重点实验室松辽水利委员会

【摘要】 随着淮北市相山区岩溶水开采量不断增大,区内岩溶水水位降落漏斗范围不断增大,为保障岩溶水的安全开采与地质环境安全,进行本区岩溶水安全开采量计算十分必要。目前神经网络模型已被广泛应用于岩溶水水位动态计算,但由于网络全局寻优能力不理想,网络训练容易陷入局部极小值,导致网络泛化能力不理想。针对人工神经网络的不足,利用遗传算法(GA)对较为常用的BP神经网络权值、阈值进行优化,将此方法应用于相山区岩溶水水位动态的预测,并以该区岩溶水临界开采水位为控制条件,经模型计算得到相山区岩溶水多年平均安全开采量为3 001.7×10~4m~3。计算结果表明:与BP神经网络相比,GA-BP神经网络具有更高的预测精度,遗传算法可以有效提高BP网络的泛化能力。

【Abstract】 With the increasing exploitation of karst groundwater in the Xiangshan District of Huaibei in Anhui province,the cone of depression of the karst groundwater in this district increases quickly. In order to guarantee the safety of karst water exploitation and the environmental geological safety,it `s necessary to calculate the safe exploitation yield in this area. Artificial neural network has widely been used in prediction of karst groundwater levels. However,the global optimization ability of the network is not ideal,and the training is easy to converge to the local minimum points,which causes the generalization to be not ideal. Aiming at the disadvantages of the neural network,the BP neural network weights and threshold are optimized by using the Genetic Algorithm,and the karst groundwater levels in the Xiangshan district are forecasted with this method.Taking the critical mining level of karst groundwater as the control condition,the annual average safe exploitation yield volume of 3 001. 7 × 10~4m~3 is determined. The calculation results show that compared with the BP neural network,the GA-BP network has higher accuracy,and the genetic algorithm can effectively improve the generalization ability of the BP network.

【基金】 国家自然科学基金项目资助(41172203,41201029,41301017)
  • 【文献出处】 水文地质工程地质 ,Hydrogeology & Engineering Geology , 编辑部邮箱 ,2016年01期
  • 【分类号】P641.8
  • 【被引频次】12
  • 【下载频次】329
节点文献中: 

本文链接的文献网络图示:

本文的引文网络