节点文献
食饵具有传染病和两时滞的捕食-食饵模型
Predator-prey Model with Infectious Disease in Prey and Two Delays
【摘要】 应用微分方程分支理论,研究食饵具有传染病和两时滞的捕食模型的稳定性和Hopf分支问题。以模型两个时滞的不同组合为分支参数,得到正平衡点局部渐近稳定和Hopf分支存在的充分条件。最后,用Matlab软件进行数值模拟,验证了结论的正确性。
【Abstract】 The stability and Hopf bifurcation of predation model with infectious disease in the prey and two delays are researched by using the bifurcation method of differential equations. Sufficient conditions for the locally asymptotic stability of the model and existence of the Hopf bifurcation are obtained by regarding different combination of the two delays as the bifurcation parameter. Finally,Matlab is employed to carry out numerical simulation to verify the results.
【关键词】 两时滞;
Hopf分支;
捕食-食饵模型;
渐近稳定;
【Key words】 two delays; Hopf bifurcation; predator-prey model; asymptotic stability;
【Key words】 two delays; Hopf bifurcation; predator-prey model; asymptotic stability;
【基金】 国家自然科学基金(61473237);陕西省自然科学基础研究计划项目(2016JM1024);西京学院科研项目(XJ160143);西京学院教改项目(JGYB1645)资助
- 【文献出处】 世界科技研究与发展 ,World Sci-Tech R & D , 编辑部邮箱 ,2016年06期
- 【分类号】Q141
- 【被引频次】2
- 【下载频次】92