节点文献

新疆各地维吾尔族遗传特征分析

Genetic characteristics of Uyghur from different sample locations in Xinjiang

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周璨林马琦姚华王黎王婷婷马艳苏银霞王志强陈开旭

【Author】 ZHOU Canlin;MA Qi;YAO Hua;WANG Li;WANG Tingting;MA Yan;SU Yinxia;WANG Zhiqiang;CHEN Kaixu;Basic Medical College of Xinjiang Medical University;Key Laboratory of Xinjiang Metabolic Disease, the First Affiliated Hospital of Xinjiang Medical University;Department of Occupational and Environmental Health, Xinjiang Medical University;Diabetes Center of the First Affiliated Hospital of Xinjiang Medical University;College of Biology Science and Technology, Xinjiang University;

【机构】 新疆医科大学基础医学院新疆医科大学第一附属医院新疆代谢性疾病重点实验室新疆医科大学公共卫生学院新疆医科大学第一附属医院糖尿病防治中心新疆大学生命科学与技术学院

【摘要】 为全面反映不同地区维吾尔族的遗传特点,收集10个维吾尔族世居地区的300名1955年以前出生的非近亲维吾尔族作为研究对象,利用30个SNP位点对其进行人类遗传学特征的研究。通过STRUCTURE 2.1软件进行贝叶斯分析的结果表明,新疆的维吾尔族分为7个不同的群体更加合理。利用新疆不同地区之间的维吾尔族的SNP数据计算的遗传距离,输入MEGA 5软件并使用UPGMA法构建系统发生树,结果表明除了乌鲁木齐与伊犁、吐鲁番与阿图什、哈密与喀什彼此接近以外,其余地区各自为一个独立的群体。新疆不同地区的维吾尔族在遗传结构上,大部分比较独立,说明现代新疆的维吾尔族遗传结果受到了包括丝绸之路漫长的历史作用,同时也受到当地特殊的地理环境的影响。

【Abstract】 To understand the genetic characteristics of Uyghur, 300 Uyghur that were born before 1955 were collected from 10 Uyghur residence locations for generations, and 30 SNP loci were employed for genetics research. Bayesian analysis was applied for their genetic structure by STRUCTURE 2.1. The results show that it was reasonable to divide the Uyghurs in Xinjiang into seven groups. UPGMA method was used for phylogenetic research by MEGA 5 based on the Fst date form between different regions in Xinjiang. Both results show that each population from 10 locations was different except those from Urumqi and Ili, Turpan and Attash, and Hami and Kashgar. In other words, almost every population of the Uyghurs in Xinjiang was independent from the genetic view, and this phenomenon may be explained by the historical effect of the silk road and geographic factors.

【关键词】 SNP维吾尔族遗传特征
【Key words】 SNPUyghurgenetic characteristics
【基金】 新疆自治区自然科学基金项目(2013211B49)
  • 【文献出处】 科技导报 ,Science & Technology Review , 编辑部邮箱 ,2016年02期
  • 【分类号】R394
  • 【被引频次】8
  • 【下载频次】147
节点文献中: 

本文链接的文献网络图示:

本文的引文网络