节点文献
基于高斯积分曲线拟合的亚像素边缘提取算法
Algorithm of Sub-pixel Edge Detection Based on Gauss Integral Curve Fitting
【摘要】 针对传统边缘提取算法定位精度低、对噪声敏感等缺点,提出一种基于高斯积分曲线拟合的亚像素边缘提取算法。通过曲面插值求取像素级边缘法截线上各离散点的灰度值,再进行高斯积分曲线拟合,寻找高斯积分曲线的均值点坐标,实现亚像素边缘的精定位。用量块直线边缘进行实验,并与现有亚像素边缘提取算法比较,实验证明基于高斯积分曲线拟合的亚像素边缘提取算法定位精度较高,可以达到1μm,且算法可靠性高、计算速度快,能够用于高精度测量。
【Abstract】 Aiming at the low accuracy in localization and sensitivity to noise in traditional edge detection algorithm,an algorithm of sub-pixel edge detection based on Gauss integral curve fitting is proposed.The gray value of discrete points on pixel edge normal section line is calculated with surface interpolation,and fitting Gauss integral curve,achieving accurate location of sub-pixel edge by searching the mean point of Gauss integral curve.Experiment with the gauge block line edge,and comparing with the existed sub-pixel edge detection algorithm,the experiment show that algorithm of sub-pixel edge detection based on Gauss integral curve fitting has high location accuracy,and can reach 1μm,it also has high reliability and speed,and can be used for high precision measurement.
【Key words】 metrology; edge detection; Gauss integral; sub-pixel; normal section line; vision measurement;
- 【文献出处】 计量学报 ,Acta Metrologica Sinica , 编辑部邮箱 ,2016年04期
- 【分类号】TP391.41
- 【下载频次】454