节点文献

基于颜色矩的改进尺度不变特征变换的移动机器人定位算法

An Algorithm Research for Mobile Robot Localization Based on the Improved Scale Invariant Feature Transform of Color Moment

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 朱奇光张兴家陈卫东陈颖

【Author】 ZHU Qi-guang;ZHANG Xing-jia;CHEN Wei-dong;CHEN Ying;Institute of Information Science and Engineering,Yanshan University;Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province;Institute of Electrical Engineering,Yanshan University;

【机构】 燕山大学信息科学与工程学院河北省特种光纤与光纤传感重点实验室燕山大学电气工程学院

【摘要】 针对基于图像外观的移动机器人定位中图像特征提取与匹配实时性和准确性差的问题,提出基于颜色矩的改进尺度不变特征变换分级图像匹配算法。该算法先由颜色矩来排序图像序列,再由改进尺度不变特征变换特征与排序后图像序列精确匹配实现定位。其中,改进的尺度不变特征变换算法以基于采样的迭代搜索算法检测极值点,由Sobel算子计算特征点的梯度方向和幅值,提高尺度不变特征变换算法速度及匹配精度。实验结果表明:改进的尺度不变特征变换算法降低误匹配率约9.2%,特征提取与匹配耗时减少约25.8%;分级图像匹配算法减少尺度不变特征变换特征计算代价约70%,减少总体耗时约43.3%。

【Abstract】 The hierarchical image matching algorithm for the real- time and accuracy requirement to process image is proposed in the field of image appearance- based mobile robot localization.The improved scale invariant feature transform,based on color moment,is used for the algorithm.The algorithm is firstly performed by color moment to sort the image sequences.Following,improved scale invariant feature transform is used to match with the sorted image sequences.To improve scale invariant feature transform,the sampling- based iterative search approach is used to detect extremums,as well as the magnitude and orientation of the keypoints gradient is calculated by Sobel operator.Experimental results show that the improved scale invariant feature transform reduces the false matching rate by 9.2%,as well the time of features extraction and matching is reduced by 25.8%.The hierarchical image matching algorithm reduces the calculation cost of scale invariant feature transform by 70%and the run time by 43.3%.

【基金】 国家自然科学基金(61201112,61172044);河北省自然科学基金(F2013203250,F2012203169)
  • 【文献出处】 计量学报 ,Acta Metrologica Sinica , 编辑部邮箱 ,2016年02期
  • 【分类号】TP391.41;TP242
  • 【下载频次】71
节点文献中: 

本文链接的文献网络图示:

本文的引文网络