节点文献
Hf4+共掺NaYF4:Yb/Tm提高上转换发光性能研究
Upconversion Performance Enhancement of NaYF4: Yb/Tm by Codoping Hf4+ as Energy Migrator
【摘要】 利用X射线多晶衍射仪、场发射扫描电镜、场发射透射电镜、X射线光电子能谱和荧光光谱仪对相近半径离子Hf4+和Zr4+共掺六方Na YF4:Yb3+/Tm3+的结构、形貌和上转换发光性能进行研究.结果表明Hf4+和Zr4+离子共掺六方Na YF4:Yb3+/Tm3+可有效调控晶场的不对称性,Hf4+相对于Zr4+是个更好的掺杂离子,它在调控晶场的同时还参与Tm3+离子上转换发光的能量传递过程,明显提高了短波500 nm以下发射带的荧光强度;而Zr4+离子仅扮演晶场调控角色而未能参与稀土离子Tm3+的上转换发光过程,Tm3+离子小于500 nm短波发射带的荧光强度没有得到明显的提高,仅提高802 nm发射带的荧光强度.该研究发现Hf4+可作为蓄能离子参与稀土离子的上转换发光过程,有助于将Hf4+作为蓄能离子和晶格操纵工具用于设计和制备其它高性能的稀土上转换发光材料.
【Abstract】 In this paper we report the infrared to visible upconversion(UC) luminescence properties of Hf4+ and Zr4+codoped Na YF4: Yb3+/Tm3+. Samples were synthesised by hydrothermal method. Concentration of Tm3+ and Yb3+ ions were fixed to be 2 mol% and 5 mol% for all samples, respectively. Na Y0.93-xYb0.05Tm0.02F4 was tridoped with 0, 2, 4, 6, 8 mol% Hf4+ or Zr4+ and corresponding samples were named as Hf0, Hf2, Hf4, Hf6, Hf8 and Zr0, Zr2, Zr4, Zr6, Zr8, respectively. In a typical procedure, trivalent nitrate stock solutions of 0.2 mol/L were prepared at first by dissolving the corresponding metal oxide in concentrated nitric acid or hydrofluoric acid at elevated temperatures. And then, a certain mole percentage of trivalent nitrate solutions were added into 20 m L 0.04 mmol EDTA aqueous solution. After vigorous stirring for 30 min, 25 m L ethanol solution containing 0.2 mmol Na F, 0.2 mmol NH4HF2 and corresponding stoichiometric amount Hf4+ or Zr4+ were dropwise added into the solution, and then p H value of solution was adjusted to 3.0 by addition 1 mol/L HF, and stirring continued for 30 min. Then the emulsion mixture was moved to PTFE-lined high pressure pot and incubated in oven at 180 ℃ for 12 h. The final products were collected, washed several times with water and ethanol alternately, and gathered by centrifugation, and then dried in oven at 60 ℃. Crystal microstructure, morphology and UC luminescence properties of samples were investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and upconversion photoluminescence spectra. Results revealed the bond distance of F1-Y and F2-Y become close with the rising of Hf4+ or Zr4+ codoped concentration, indicating crystal field asymmetry of rare earth ions were tuned effectively by Hf4+ or Zr4+ codoping. Electron hypersensitive transition was promoted, and the intensity of 802 nm emission was enhanced obviously. Hf4+ ion was a better dopant than Zr4+, for the extranuclear electronic structure of Hf4+ was the same with rare earth ions, and Hf4+ ion was involved in UC process as a migrator to improve Tm3+ upper state levels’ population. UC luminescence of Hf4+ codoped sample were enhanced obviously, especially the shortwave emissions. The reported work establishes the understanding of Hf4+ as a migrator for Tm3+ ions upconversion luminescence, which may be helpful for design and synthesis of high-performance upconversion materials.
【Key words】 upconversion; hafnium doping; crystal field; energy migration;
- 【文献出处】 化学学报 ,Acta Chimica Sinica , 编辑部邮箱 ,2016年02期
- 【分类号】TQ422
- 【被引频次】6
- 【下载频次】217