节点文献
键长-键角和Radau坐标下哈密顿算符在傅里叶基组表象下的厄米性(英文)
Hermiticity of Hamiltonian Matrix using the Fourier Basis Sets in Bond-Bond-Angle and Radau Coordinates
【摘要】 在量子动力学计算中,有时候为了规避奇点问题或者节省计算量,我们经常需要对哈密顿量进行变换.然而,在使用傅里叶基矢计算时,哈密顿量的变换形式容易导致哈密顿矩阵失去厄米性,进而有些情况下使数值计算变得不稳定.本文主要讨论构建具有厄米性的哈密顿算符的方法.以三原子分子为例,构建了键长一键角和Radau坐标下描述分子运动的各种形式的哈密顿量.基于这些哈密顿量,采用含时波包方法计算了OClO分子的吸收光谱,讨论了非厄米性矩阵对计算结果的影响.本文所得到的结论对基于基函数展开的量子动力学计算都是适用的.
【Abstract】 In quantum calculations a transformed Hamiltonian is often used to avoid singularities in a certain basis set or to reduce computation time.We demonstrate for the Fourier basis set that the Hamiltonian can not be arbitrarily transformed.Otherwise,the Hamiltonian matrix becomes non-hermitian,which may lead to numerical problems.Methods for correctly constructing the Hamiltonian operators are discussed.Specific examples involving the Fourier basis functions for a triatomic molecular Hamiltonian(J=0) in bond-bond angle and Radau coordinates are presented.For illustration,absorption spectra are calculated for the OCIO molecule using the time-dependent wavepacket method.Numerical results indicate that the non-hermiticity of the Hamiltonian matrix may also result from integration errors.The conclusion drawn here is generally useful for quantum calculation using basis expansion method using quadrature scheme.
【Key words】 Discrete variable representation; Hermiticity; Time-dependent wavepacket method; Absorption spectra;
- 【文献出处】 Chinese Journal of Chemical Physics ,化学物理学报(英文版) , 编辑部邮箱 ,2016年01期
- 【分类号】O641.1