节点文献

基于时空贝叶斯模型的行程时间可靠性预测

Reliability Prediction of Travel Time Based on Spatio-Temporal Bayesian Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨庆芳韦学武林赐云李志林刘翔宇

【Author】 YANG Qing-fang;WEI Xue-wu;LIN Ci-yun;LI Zhi-lin;LIU Xiang-yu;State Key Laboratory of Automotive Simulation and Control,Jilin University;College of Transportation,Jilin University;Jilin Province Key Laboratory of Road Traffic,Jilin University;

【机构】 吉林大学汽车仿真与控制国家重点实验室吉林大学交通学院吉林大学吉林省道路交通重点实验室

【摘要】 为了全面、准确地分析路段行程时间的时空分布,将路段的时间序列和空间关联关系纳入两个邻近路段的行程时间可靠性预测过程.在时间维度上,通过广泛使用的卡尔曼滤波预测行程时间;在空间维度上,根据离散马尔科夫链构建上下游路段行程时间的关联模型.进而构建了时空贝叶斯模型(ST-BM),将时间维度和空间维度的行程时间分布进行融合,从而预测路段行程时间可靠性.实例分析结果表明,相比于先验分布数据,文中模型将两个实测邻近路段的可靠性预测误差分别降低了45.7%和29.2%,验证了ST-BM模型的有效性.

【Abstract】 In order to fully and accurately analyze the spatio-temporal distribution of link travel time,this paper incorporates the time sequence and the spatial relationship between two links into two adjacent links for travel time reliability prediction. From the temporal dimension,the widely-used Kalman filtering is adopted to predict the travel time; while from the spatial dimension,the correlation model describing the travel time between downstream and upstream links is built based on the discrete Markov chain model. Then,a spatio-temporal Bayesian model( STBM) is constructed to fuse the temporal and spatial travel time distributions for predicting the travel time reliability of road links. Case study results show that,as compared with the prior distributions,the proposed model decreases the reliability prediction error by 45. 7% and 29. 2% respectively for the two measured adjacent links,which verifies the effectiveness of the ST-BM model.

【基金】 国家科技支撑计划项目(2014BAG03B03);山东省省管企业科技创新项目(20122150251-5)~~
  • 【文献出处】 华南理工大学学报(自然科学版) ,Journal of South China University of Technology(Natural Science Edition) , 编辑部邮箱 ,2016年04期
  • 【分类号】U491
  • 【被引频次】10
  • 【下载频次】496
节点文献中: 

本文链接的文献网络图示:

本文的引文网络