节点文献

不确定环境下再制造加工车间多目标调度优化方法

Multi-objective optimization method of remanufacturing processing workshop scheduling under uncertain conditions

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张铭鑫张玺彭建刚陈鸿海

【Author】 ZHANG Ming-xin;ZHANG Xi;PENG Jian-gang;CHEN Hong-hai;School of Machinery and Automobile Engineering,Hefei University of Technology;

【机构】 合肥工业大学机械与汽车工程学院

【摘要】 针对再制造生产过程中工件的加工时间和成本不确定性调度问题,文章提出了一种不确定环境下再制造加工车间多目标调度优化方法。该方法采用模糊变量表示其不确定性参数,以最小化加工时间和成本为目标,在满足模糊交货期等约束条件下,构建了不确定环境下多目标决策的模糊机会约束规划模型,并提出了求解该模型的混合智能算法;应用模糊模拟技术产生样本数据,用于训练神经网络以逼近不确定函数;针对神经网络中存在收敛速度慢、容易陷入局部最优的缺点,应用改进的粒子群算法优化神经网路,将训练好的神经网路嵌入改进的遗传算法中求解调度模型。最后,通过仿真实例,验证该模型和算法的可行性。

【Abstract】 The multi-objective optimization method of remanufacturing processing workshop scheduling under uncertain conditions is proposed to solve the uncertainty problem of the processing time and cost for scheduling the remanufactured parts.In this method,the fuzzy variables are used to express the uncertain parameters,and the minimized processing time and cost are taken as the targets,and the fuzzy chance-constrained programming model with multi-objective decision under uncertain conditions is established,which can give solution through using the hybrid intelligence algorithm.To approach the uncertain function,the data generated from the fuzzy simulation are used for training neural networks.The modified particle swarm algorithm is used for overcoming the defect of the low convergence rate and local optimization to optimize the neural networks.The well-trained neural networks are assigned to the modified genetic algorithm to establish the scheduling model.Finally,the feasibility of the model and algorithm is verified through the simulation example.

【基金】 国家重点基础研究发展计划(973计划)资助项目(2011CB013406)
  • 【文献出处】 合肥工业大学学报(自然科学版) ,Journal of Hefei University of Technology(Natural Science) , 编辑部邮箱 ,2016年04期
  • 【分类号】TP18;TB497
  • 【被引频次】22
  • 【下载频次】381
节点文献中: 

本文链接的文献网络图示:

本文的引文网络