节点文献

SDN中基于Q-learning的动态交换机迁移算法

Dynamic switch migration algorithm in software defined networks based on Q-learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵季红张彬王力曲桦郑浪

【Author】 ZHAO Jihong;ZHANG Bin;WANG Li;QU Hua;ZHENG Lang;School of Telecommunication and Information Engineering,Xi’an University of Posts & Telecommunications;School of Electronic and Information Engineering,Xi’an Jiaotong University;

【机构】 西安邮电大学通信与信息工程学院西安交通大学电子信息学院

【摘要】 由于网络流量动态变化,控制器负载均衡成为大规模部署软件定义网络研究的重点。提出基于Q-learning的动态交换机迁移算法,首先对软件定义网络中的控制器部署问题建模,再应用Q-learning反馈机制学习实时网络流量,最后根据Q表格将交换机从高负载控制器动态迁移到低负载控制器上,实现控制器的负载均衡。仿真结果表明,所提算法能够获得较低的控制器负载标准方差。

【Abstract】 Load balance for controllers becomes an important research issue for large- scale deployed Software Defined Networks( SDN) with the dynamic network load. A dynamic switch migration algorithm based on Q-learning is proposed in this paper,which models controller placement problem firstly,then uses feedback scheme of Q-learning to learn the real time network load,and migrates switches from high-load controllers to low-load controllers on the bias of Q table lastly,to realize load balance of controllers. Simulation results show that the proposed algorithm gets low standard deviation of load born on controllers.

【关键词】 软件定义网络OpenFlow控制器Q学习
【Key words】 software defined networksOpenFlowcontrollerQ-learning
【基金】 国家自然科学基金项目(61371087);国家“863”计划项目(2015AA015702)
  • 【分类号】TP393.02
  • 【被引频次】3
  • 【下载频次】173
节点文献中: 

本文链接的文献网络图示:

本文的引文网络