节点文献

基于ASTER数据黑河中游植被含水量反演研究

Theretrieval of Vegetation Water Content based on ASTER Images in Middle of Heihe River Basin

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 闻熠黄春林卢玲顾娟

【Author】 Wen Yi;Huang ChunLin;Lu Ling;Gu Juan;Key Laboratory of Remote Sensing of Gansu Province,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences;Heihe Remote Sensing Experimental Research Station,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences;University of Chinese Academy of Sciences;MoE Key Laboratory of West China’s Environmental System,Lanzhou University;

【机构】 中国科学院寒区旱区环境与工程研究所甘肃省遥感重点实验室中国科学院寒区旱区环境与工程研究所黑河遥感试验研究站中国科学院大学兰州大学西部环境与气候变化研究院

【摘要】 植被含水量是影响植物生长的主要限制因子之一,也是衡量植被生理状态和形态结构的重要参数。应用遥感技术定量估测植被含水量,对于农业旱情监测、作物产量估计和科学研究具有重要意义。基于2012年黑河生态水文遥感试验期间获得的6景ASTER遥感数据和同步观测的研究区生物量观测数据集,选取NDVI、RVI、SAVI和MSAVI 4种植被指数分别与单位面积内植被含水量的关系进行比较分析,建立了不同植被指数的植被含水量反演模型,并对反演结果进行了验证。研究结果表明:4种植被指数均与实测的植被含水量有较高的相关性(R2>0.846),利用MSAVI反演的植被含水量精度略优于其他3种指数,其均方根误差(RMSE)在0.794kg/m2内。模型较为可靠,可以为大范围获取植被含水量信息提供有效方法。

【Abstract】 Vegetation Water Content(VWC)is one of the main limiting factors of affecting growth of plants,which is an important parameter to character vegetation physiological status and morphology.Quantitative estimation of VWC by utilizing remote sensing technology has important significances for agricultural drought monitoring,crop yield estimation and scientific research.In this paper,six periods ASTER images and ground-based measurements of VWC at 11 sampling sites are used to develop the empirical inversion model of VWC,which are obtained during the Heihe Watershed Allied Telemetry Experimental Research(Hi-WATER)in 2012.The four types of vegetation indexes(NDVI,RVI,SAVI,and MSAVI)are adopted in this study.We analyze the relationship between different vegetation indexes and the measured VWC,then develop and validate these VI-based empirical models for VWC retrieval.Results show that the correlation is very high between the measured VWC and the selected four vegetation indexes(R2>0.846).It indicates that we can retrieve VWC with high accuracy by using the four types of vegetation indexes.Among these vegetation indexes,the MSAVI-based retrieval model achieves the highest accuracy and the root mean square error(RMSE)is only 0.794kg/m2.The study also prove that the developed VWC retrieval model with MSAVI is reliable and an effective way for monitoring spatial variation of regional VWC.

【基金】 国家自然科学基金项目(41101387;91325106);中国科学院“百人计划”项目(29Y127D01)资助
  • 【文献出处】 遥感技术与应用 ,Remote Sensing Technology and Application , 编辑部邮箱 ,2015年05期
  • 【分类号】Q948;TP79
  • 【被引频次】14
  • 【下载频次】358
节点文献中: 

本文链接的文献网络图示:

本文的引文网络