节点文献
PCL基电纺纤维膜的抑菌、相容及降解性能研究
Antibacterial, in vitro/vivo biocompatibility and biodegradability of PCL-based electrospun fibers
【摘要】 目的探讨不同材料组成对PCL基电纺纤维膜的表面形貌、亲水性能、抑菌性能、生物相容性、屏蔽和降解性能的影响。方法电纺丝法制备了PCL、PCL/甲硝唑、PCL/明胶/甲硝唑以及PCL/明胶/甲硝唑/醋酸纳米纤维膜,对应P0,P30,PG30及PGH30。扫描电镜(SEM)观察不同膜的表面结构。通过测量载药膜周围抑菌圈的直径来表征膜的抗菌性能。四唑盐比色法(MTT)测试测试细胞毒性。通过兔皮下埋植,伊红苏木素(H&E)染色切片法观察不同膜的组织相容性,降解性能及细胞屏蔽性能。结果甲硝唑的引入赋予膜良好的抑菌性能。明胶引入显著提高了膜的组织相容性及降解速率。电纺液中微量醋酸(0.1%v/v聚合物溶液)能够有效提高电纺液的均一性,从而得到结构及性能稳定的纤维膜。高药物含量及微量醋酸的加入对于膜的细胞及组织相容性均无明显副作用。P0及P30在24周内均能够维持对成纤维细胞的屏蔽作用,PGH30能够维持8周,而PG30的细胞屏蔽期小于8周。结论不同组分对纳米纤维膜的结构和性能具有不同影响。本研究将为设计广泛应用于骨科疾病治疗的膜材料奠定基础。
【Abstract】 Objective To investigate the effects of different composition of electrospun PCL-based nanofiber membranes on surface morphology, hydrophilic property, antibacterial property, biocompatibility, biodegradability and cell barrier function. Methods Nanofiber membranes composed of polycaprolactone(PCL), PCL/metronidazole(MNA), PCL/gelatin/MNA, and PCL/gelatin/MNA/acetic acid(HAC), named P0, P30, PG30, and PGH30, respectively, were fabricated by electrospinning. The surface morphology of different membrane was observed by scanning electron microscope(SEM). MTT method using L929 cell was applied to determine the cell toxicity. Rabbit subcutaneous was utilized to verify the influences of drug-loading on histocompatibility, in vivo biodegradability and cell barrier function. Results The MNA loading nanofiber membranes preserved good antibacterial function. Gelatin incorporation considerably improved cytocompatibility, while accelerating the degradation dramatically. Very low quantities(0.1% v/v with respect to polymer solusion) of HAC effectively prevented the phase separation of PCL and gelatin, resulting in homogeneous nanofiber, which facilitates stable physical properties. High drug loading and trace amounts of HAC did not cause any adverse reactions, as evidenced by subcutaneous implantation. Both P0 and P30 maintained their cell barrier function in vivo for as long as 24 weeks; PGH30, for 8 weeks; and PG30, for less than 8 weeks. Conclusion Different compositions have different effects on nanofiber membranes’ structure and performances. These findings will support the design of membranes with superior overall performance for orthopedic application.
- 【文献出处】 生物骨科材料与临床研究 ,Orthopaedic Biomechanics Materials and Clinical Study , 编辑部邮箱 ,2015年01期
- 【分类号】R687;R318.08
- 【被引频次】2
- 【下载频次】241