节点文献

基于样本扩张和双子空间决策融合的单样本人脸识别算法

Algorithm for Single Sample Face Recognition Based on Sample Augments and Double Subspace Decision Fusion

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨军袁红照刘妍丽

【Author】 Yang Jun;Yuan Hongzhao;Liu Yanli;College of Computer Science,Sichuan Normal University;School of Computer Science,Anyang Normal University;College of Mathematics and Software Science,Sichuan Normal University;

【机构】 四川师范大学计算机科学学院安阳师范学院计算机学院四川师范大学数学与软件学院

【摘要】 对基于滑动窗口进行样本扩充的单样本人脸识别方法进行了改进,改进后算法一方面在识别阶段采用了比原算法更少的特征,提高了识别的时间效率;另一方面在训练阶段获得原始样本的镜像样本作为附加的训练、注册集合,通过学习训练形成双子空间,识别结果由双子空间通过决策融合得到,提高了对测试样本变化的鲁棒性。在ORL人脸库和Feret子集人脸库上的实验表明,该算法在识别率上优于同类算法。

【Abstract】 To apply supervised learning method in single face recognition problem,an improved algorithm based on sample augments by sliding window is proposed.The recognition time of the proposed algorithm is shorter than that of the original algorithm because of less feature dimension.Moreover,the mirror samples are generated to constitute auxiliary training set and two subspaces can be obtained by subspace learning.The recognition result is from the decision fusion of two subspaces and is robust to variation of the test samples.The experiment results on ORL face database and subset of Feret face database show that the proposed algorithm has higher recognition accuracy than other similar algorithms.

【基金】 国家自然科学基金(61373163)资助项目;国家科技支撑计划(2012BAH76F01)资助项目;四川省教育厅科研(11ZB069)资助项目;四川省可视化与虚拟现实重点实验室(PJ2012001)资助项目
  • 【文献出处】 数据采集与处理 ,Journal of Data Acquisition and Processing , 编辑部邮箱 ,2015年01期
  • 【分类号】TP391.41
  • 【被引频次】8
  • 【下载频次】120
节点文献中: 

本文链接的文献网络图示:

本文的引文网络