节点文献
二次Grbner基及Orlik-Solomon代数同构
Quadratic Grbner basis and the isomorphism of Orlik-Solomon algebras
【摘要】 Orlik-Solomon代数是基于构形A的外代数E模去一个齐次理想I的商代数。研究了二次构形与二次Grbner基之间的关系,得到了中心构形A是一个二次构形当且仅当I具有二次Grbner基,给出了直接证明。对于构形的Orlik-Solomon代数,分别针对中心构形和仿射构形给出了其最高次分支的同构定理。
【Abstract】 The Orlik-Solomon algebra is the quotient of the exterior algebra E based on A by a homogeneous ideal I.The relations between a quadratic arrangement and a quadratic Grbner basis are studied. And the proof of the conclusion that a central arrangement is a quadratic arrangement if and only if I has a quadratic Grbner basis is given. We do some research on the Orlik-Solomon algebras for central and affine arrangements,and give the isomorphism theorems for the top dimensional parts of Orlik-Solomon algebras.
【关键词】 二次构形;
二次Grbner基;
Orlik-Solomon代数;
标架;
同构;
【Key words】 the quadratic arrangement; the quadratic Grbner basis; Orlik-Solomon algebra; framing; isomorphism;
【Key words】 the quadratic arrangement; the quadratic Grbner basis; Orlik-Solomon algebra; framing; isomorphism;
【基金】 国家自然科学基金资助项目(11326078);长春理工大学科技创新基金项目(XJJLG-2014-01)
- 【文献出处】 山东大学学报(理学版) ,Journal of Shandong University(Natural Science) , 编辑部邮箱 ,2015年06期
- 【分类号】O153
- 【下载频次】14