节点文献

低维量子系统中电子态的数值解法

A Numerical Method to Solve Electron States in Low Dimensional Quantum Systems

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘文浩冯慧敏杨璐杨硕班士良屈媛

【Author】 LIU Wen-hao;FENG Hui-min;YANG Lu;YANG Shuo;BAN Shi-liang;QU Yuan;School of Physical Science and Technology,Inner Mongolia University;

【机构】 内蒙古大学物理科学与技术学院

【摘要】 在有效质量近似下,讨论GaN基低维量子系统(包括量子线和量子点)中电子态的数值求解方法.首先,在无限深势阱近似时,由薛定谔方程解得量子线和量子点中单电子波函数的解析解,分别为贝塞尔函数和球贝塞尔函数,并获得本征能级的解析表达式;然后,通过有限元差分法,数值求解单电子的本征能级和本征态.对比发现,数值求解方法与解析解获得的电子波函数和本征能量在误差允许范围内相等.这说明有限元差分方法求解低维量子系统中电子态的可行性,并可进一步推广到有限高势有限厚垒结构中电子态的求解.最后,计算和讨论不同组分下纤锌矿InxGa1-xN/GaN核壳结构量子线和量子点中的电子态.

【Abstract】 Within the effective mass approximation,the numerical solution of the electronic states in GaN-based low dimensional quantum systems(including quantum wires and quantum dots)is discussed.First,the wave functions of a single electron in quantum wires and quantum dots under the approximation of infinitely deep potential barriers are solved analytically from Schrdinger equation as Bessel functions and spherical Bessel functions respectively.The analytic expressions of corresponding eigen-energies are also obtained.Then,the eigen-energies and eigen-wave functions of a single electron are solved numerically by the finite element difference method.By comparison,the numerical and analytical wave functions and eigen energies of the electron are consistent within allowable deviation.It indicates that finite element difference method is valid for solving electron states in low dimensional quantum systems and can be extended to solve the structures with finitely wide barriers and finitely high potenticals.At last,the wave functions and eigen-energies of electrons in InxGa1-xN/GaN core-shell quantum wires and quantum dots with different xhave been computed and discussed.

【基金】 国家自然科学基金(批准号:61274098和11304142);国家大学生创新性试验计划项目(编号:201310126031)资助项目
  • 【文献出处】 内蒙古大学学报(自然科学版) ,Journal of Inner Mongolia University(Natural Science Edition) , 编辑部邮箱 ,2015年04期
  • 【分类号】O471.1
  • 【被引频次】2
  • 【下载频次】170
节点文献中: 

本文链接的文献网络图示:

本文的引文网络