节点文献

云资源状态变化趋势预测研究进展

Survey of state prediction of computing resources in cloud

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 洪斌彭甫阳邓波王东霞

【Author】 Hong Bin;Peng Fuyang;Deng Bo;Wang Dongxia;Beijing Institute of System Engineering;National Key Laboratory of Science & Technology on Information System Security;

【机构】 北京系统工程研究所信息系统安全技术重点实验室

【摘要】 云环境下资源状态变化趋势预测技术通过深入挖掘分析监控数据,根据历史运行状态以及其他经验规律,对资源的未来使用状态的可能发展趋势作出预测,以便及时发现潜在的性能瓶颈和安全威胁,为用户提供可靠稳定的云服务。结合实例介绍了在资源状态变化趋势预测方面有代表性的研究方法,包括概率分析、方程拟合、机器学习、事件感知等,并对比了各类方法的性能特点及局限性;随后,给出云环境资源状态预测研究常用的实验平台、标准数据集合以及评价指标等的简要介绍;最后讨论了云资源状态变化趋势预测技术在数据复杂度和规模等方面所面临的技术挑战。在将来,轻量级、可扩展、非监督的资源状态分析算法将获得更多关注,而融合并利用计算资源自身特征的研究方法将能够更准确地预测虚拟资源的状态变化趋势。

【Abstract】 By analyzing running data of those computing resources,cloud services provider can detect and predict potential anomalies in the resources to get a whole picture of their running status. At present,most cloud service providers have already opened status monitoring tools to their users as a basic service,while any further conclusion drawing from data analysis is still in the preliminary analysis stage. In resources status predicting area,the current mainstream methods included the probabilistic analysis,equation fitting,machine learning and event-aware methods. This paper introduced the premise assumptions of the above types of methods and analyzed their performance with practical applications. It also discussed the development trend of cloud resources status monitoring and forecasting techniques. In cloud computing environment,lightweight,scalable and unsupervised analysis algorithms will get more attention. More accurate result can be achieved while considering the inherent characteristics in algorithms designing.

【关键词】 云计算虚拟资源状态预测
【Key words】 cloud computingvirtualized resourcesstate predicting
【基金】 国家“863”计划基金资助项目(2013AA01A215);国家自然科学基金资助项目(61271252)
  • 【文献出处】 计算机应用研究 ,Application Research of Computers , 编辑部邮箱 ,2015年12期
  • 【分类号】TP393.01
  • 【被引频次】2
  • 【下载频次】162
节点文献中: 

本文链接的文献网络图示:

本文的引文网络