节点文献

基于用户偏好的矩阵分解推荐算法

Matrix factorization recommendation algorithm based on users’ preference

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘慧婷陈艳肖慧慧

【Author】 LIU Huiting;CHEN Yan;XIAO Huihui;School of Computer Science and Technology,Anhui University;

【机构】 安徽大学计算机科学与技术学院

【摘要】 为提高推荐精确度,提出了一种基于用户偏好的矩阵分解推荐算法(USPMF)。综合考虑通过对用户之间的相似性、用户与项目之间的信息的分析,同时考虑数据量大引起的时间和空间复杂度高的问题,引入了矩阵分解方式。USPMF算法以优化损失函数为目标,在达到全局最优的同时,提高预测的准确度。将USPMF算法与正则化矩阵分解算法、基于用户的协同过滤推荐算法进行了比较,在真实的数据集上的实验结果表明,USPMF算法在预测准确性上有显著提高,平均绝对误差(MAE)分别降低了13.70%、1.17%,均方根误差(RMSE)分别降低了15.07%、1.03%。

【Abstract】 To improve the accuracy of recommendation, the paper proposed USPMF, a matrix factorization recommendation algorithm based one users ’ preference. Based on the analysis of the similarity between users and the information between users and items while considering the problem of high complexity of time and space caused by large amount of data,matrix factorization was introduced. The USPMF algorithm optimized the loss function as the goal to achieve global optimization while improving the prediction accuracy. USPMF algorithm was compared with regularized singular value decomposition recommender algorithm and user-based collaborative filtering algorithm. The experiment results on a real dataset show that USPMF algorithm has significant advantages in the accuracy of forecast. The Mean Absolute Error( MAE) is decreased by 13. 7%,1. 03% and Root Mean Squared Error( RMSE) is decreased by 15. 7%,1. 03%.

【基金】 国家自然科学基金资助项目(61202227)
  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2015年S2期
  • 【分类号】TP391.3
  • 【被引频次】39
  • 【下载频次】602
节点文献中: 

本文链接的文献网络图示:

本文的引文网络