节点文献

基于稀疏编码的手背静脉识别算法

Dorsal hand vein recognition algorithm based on sparse coding

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 贾旭王锦凯崔建江孙福明薛定宇

【Author】 JIA Xu;WANG Jinkai;CUI Jianjiang;SUN Fuming;XUE Dingyu;School of Electronics and Information Engineering, Liaoning University of Technology;College of Information Science and Engineering, Northeastern University;

【机构】 辽宁工业大学电子与信息工程学院东北大学信息科学与工程学院

【摘要】 为提高静脉特征提取的有效性,提出了基于稀疏编码的手背静脉识别算法。首先,在图像采集过程中,依据实时的质量评价结果对采集系统参数进行自适应调整,获取高质量静脉图像;其次,针对主观选择的特征有效性主要依赖于经验的缺陷,提出了基于稀疏编码的特征学习机制,从而获得客观优质的静脉特征。实验结果表明,基于所提算法获得的静脉特征具有较好的类间区分性与类内紧凑性,令使用该算法的系统具有较高的识别率。

【Abstract】 In order to improve the effectiveness of vein feature extraction, a dorsal hand vein recognition method based on sparse coding was proposed. Firstly, during image acquisition process, acquisition system parameters were adaptively adjusted in real-time according to image quality assessment results, and the vein image with high quality could be acquired. Then concerning that the effectiveness of subjective vein feature mainly depends on experience, a feature learning mechanism based on sparse coding was proposed, thus high-quality objective vein features could be extracted. Experiments show that vein features obtained by the proposed method have good inter-class separableness and intra-class compactness, and the system using this algorithm has a high recognition rate.

【基金】 国家自然科学基金资助项目(61272214);辽宁省教育厅资助项目(L2013241)
  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2015年04期
  • 【分类号】TP391.41
  • 【被引频次】14
  • 【下载频次】174
节点文献中: 

本文链接的文献网络图示:

本文的引文网络