节点文献

散乱点云近离群点识别算法

Near outlier detection of scattered point cloud

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵京东杨凤华刘爱晶

【Author】 ZHAO Jingdong;YANG Fenghua;LIU Aijng;School of Mathematical Sciences, Qufu Normal University;

【机构】 曲阜师范大学数学科学学院

【摘要】 针对原始曲面变化度的局部离群系数(SVLOF)无法有效滤除三维实体的棱边或棱角处的离群点问题,提出了一种散乱点云近离群点的滤除算法。该算法首先将SVLOF定义在类k邻域上,并将SVLOF的定义内容进行了扩展,使其既能滤除平滑曲面上的离群点,又能滤除三维实体的棱边或棱角点处的离群点,同时仍然保留SVLOF原有的足够宽泛的阈值选取空间。仿真数据和实际数据的实验结果均表明,在效率基本保持不变的情况下,所提算法能比原始SVLOF算法更有效地检测出距离主体点云近的离群点。

【Abstract】 Concerning that the original Surface Variation based Local Outlier Factor( SVLOF) cannot filter out the outliers on edges or corners of three-dimensional solid, a new near outlier detection algorithm of scattered point cloud was proposed. This algorithm firstly defined SVLOF on the k neighborhood-like region, and expanded the definition of SVLOF.The expanded SVLOF can not only filter outliers on smooth surface but also filter outliers on edges or corners of threedimensional solid. At the same time, it still retains the space of threshold value enough of original SVLOF. The experimental results of the simulation data and measured data show that the new algorithm can detect the near outliers of scattered point cloud effectively without changing the efficiency obviously.

【基金】 国家自然科学基金资助项目(61104136)
  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2015年04期
  • 【分类号】TP391.72
  • 【被引频次】11
  • 【下载频次】147
节点文献中: 

本文链接的文献网络图示:

本文的引文网络