节点文献

基于混合自适应回归的红外盲元补偿算法

A New Infrared Blind-Pixel Compensation Algorithm Based on Hybrid Autoregressive Modeling

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈苏婷孟浩杨世洪陈金立

【Author】 Chen Suting;Meng Hao;Yang Shihong;Chen Jinli;Nanjing University of Information Science and Technology,Jiangsu Key Laboratory of Meteorological Observation and Information Processing;The Third Research Laboratory,Institute of Optics and Electronics,Chinese Academy of Sciences;

【机构】 南京信息工程大学江苏省气象探测与信息处理重点实验室中国科学院光电技术研究所三室

【摘要】 针对红外成像非均匀性产生的盲元与盲元簇问题,提出一种混合自适应回归的红外盲元补偿算法(HAM).首先对红外图像进行多尺度分解,并对各分解尺度构造非参数回归补偿;然后对各尺度间构建自回归参数模型实现从低分辨到高分辨的学习,进一步提高补偿精确度.HAM算法打破了现有补偿算法基于滤波和插值的传统思路,建立了基于多尺度分析的混合自适应回归补偿的新方法.实验结果表明,相比于传统的红外盲元补偿算法,HAM算法具有很好的适应性,对于具有大量孤立和盲元簇图像均能取得很好效果,且补偿后图像具有较好的清晰度与边缘细节.

【Abstract】 An infrared blind-pixel compensation algorithm is proposed based on hybrid autoregressive modeling(HAM).Combined with respective advantages of two modeling,a hybrid modeling algorithm is presented from the perspective of multi-scale.The infrared image is decomposed into multi-scaled sub-images by HAM algorithm.And then the blind-pixel is restored through the nonparametric regression estimation model in intra-scale;meanwhile the image is upsampled by the image parameter model in inter-scale.HAM establishes a set of multi-scale blind-pixel compensation method based on hybrid parametric and nonparametric regression model.The experimental results show that,compared with the classical compensation algorithms,the algorithm has the advantages of good adaptability and can effectively compensate both isolated and blocked blind pixels.And the compensated image achieves noticeable resolution and edge details.

【基金】 国家自然科学基金(61302188);中国博士后特别资助基金(2012T50510);江苏省高校自然科学研究重大项目(12KJA510001)
  • 【文献出处】 计算机辅助设计与图形学学报 ,Journal of Computer-Aided Design & Computer Graphics , 编辑部邮箱 ,2015年04期
  • 【分类号】TN219
  • 【被引频次】5
  • 【下载频次】146
节点文献中: 

本文链接的文献网络图示:

本文的引文网络