节点文献

基于光电技术皮棉疵点快速检测方法的研究

Research on Method to Measure Cotton Defects Based on Optoelectronic Technique

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张志峰翟玉生郭莹莹王新杰杜银霄

【Author】 Zhang Zhifeng;Zhai Yusheng;Guo Yingying;Wang Xinjie;Du Yinxiao;School of Physics & Electronic Engineering, Zhengzhou University of Light Industry;Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry;Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management;

【机构】 郑州轻工业学院物理与电子工程学院郑州轻工业学院机电工程学院郑州航空工业管理学院数理系

【摘要】 轧工质量是棉花重要的质量指标。皮棉疵点的存在会影响到棉花加工的质量以及纺织品的品质,因此皮棉疵点含量的快速检测具有重要的意义。针对皮棉疵点中破籽、带纤维籽屑和僵棉,利用皮棉疵点不同的光响应特性,提出了一种基于改进的自适应迭代阈值法皮棉疵点快速检测方法。该方法基于光电探测技术,利用改进后的形态学边缘检测算子对多疵点图像进行边缘检测,得到了具有明显特征的疵点图像,再用迭代阈值法求取阈值进行图像分割,当权重系数n=0.6时破籽和带纤维籽屑有最佳分割阈值,对于僵棉权重系数n=0.5时有最佳分割阈值。同技术人员的比对实验结果表明原棉疵点检测正确率达到85%以上,检测时间在3 s以内,基本能够满足快速检测的需求。

【Abstract】 Cotton ginning quality is very important to evaluate the cotton grade. Cotton defects influence cotton and textiles qualities. It is very significant to measure cotton defects rapidly. Cotton defects include seed coat fragment, bearded motes, and ginned dead cotton which have different light response characteristics. A novel method is proposed to measure the cotton defects based on optoelectronic measurement technique. The image segmentation is made by using adaptive thresholds and cotton defects can be inspected correctly. The best segmentation threshold of seed coat fragment and bearded motes is 0.6. The dead cotton′ s best segmentation threshold is 0.5. The comparison experimental results show that the inspection accuracy of measuring system is more than 85% and the measuring time is less than 3 seconds. The measuring system can meet requirement of cotton defects rapid inspection.

【基金】 国家自然科学基金(61274012,U1304507);河南省高等学校青年骨干教师资助计划资助项目(2012GGJS-118);河南省高校科技创新团队支持计划资助项目(2012IRTSTHN013);河南省重点科技攻关项目(122102210436)
  • 【文献出处】 激光与光电子学进展 ,Laser & Optoelectronics Progress , 编辑部邮箱 ,2015年03期
  • 【分类号】TP391.41
  • 【被引频次】10
  • 【下载频次】142
节点文献中: 

本文链接的文献网络图示:

本文的引文网络