节点文献
Bochner-Riesz算子及其交换子在加权(L_ω~q,L~p)~α(R~n)空间上的有界性
The Boundedness of Bochner-Riesz Operators and the Commutator on Weighted(L_ω~q,L~p)~α(R~n)Spaces
【摘要】 利用Ap权性质及分析中的不等式,得到Bochner-Riesz算子Tn-12R及由BMO(Rn)函数b(x)和TδR(δ≥(n-1/2))生成的交换子在加权共合空间(Lqω,Lp)α(Rn)上的有界性,其中1<q≤α<p≤∞.
【Abstract】 To use the nature of Apweight and inequality,this paper obtains the boundedness of Bochner-Riesz operators Tn-12 Rand the commutator formed by aBMO(Rn)function b(x)and TδR(δ≥n-12)on the weighted(Lqω,Lp)α(Rn)spaces,where 1<q≤α<p≤∞.
【关键词】 Bochner-Riesz算子;
交换子;
加权共合空间;
Ap权;
【Key words】 Bochner-Riesz operators; commutator; weighted amalgam space; Ap weight;
【Key words】 Bochner-Riesz operators; commutator; weighted amalgam space; Ap weight;
【基金】 国家自然科学基金项目(11201003);安徽省高校自然科学项目(KJ2012A133)
- 【文献出处】 杭州师范大学学报(自然科学版) ,Journal of Hangzhou Normal University(Natural Science Edition) , 编辑部邮箱 ,2015年03期
- 【分类号】O177
- 【下载频次】55