节点文献

基于分类字典学习的遥感图像超分辨率方法

Remote-sensing Image Super-resolution Algorithm Based on Classified Dictionary Learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王超孙权森刘佶鑫贺金平张从梅

【Author】 WANG Chao;SUN Quansen;LIU Jixin;HE Jinping;ZHANG Congmei;Nanjing University of Science & Technology;Nanjing University of Posts and Telecommunications;Beijing Institute of Space Mechanics & Electricity;

【机构】 南京理工大学图像工程实验室南京邮电大学宽带无线通信技术教育部工程研究中心北京空间机电研究所

【摘要】 传统的超分辨率方法存在图像重构时间长,重构质量有待改进的问题。因此,文章针对遥感图像对传统的超分辨率方法进行了改进。主要利用原始图像的局部二值模式(LBP)纹理特征对图像进行分类识别,学习分类字典,并使用对应类别字典对低分辨率图像进行超分辨率重构。该方法的优势在于既加快了重构速度,又有效改善了重构图像的质量。试验结果证明了该方法相对于传统方法的优越性。

【Abstract】 The traditional super-resolution method has problems that the reconstruction time is too long and the reconstruction quality needs to be improved. Therefore, in view of the remote sensing image, this paper improves the traditional method of super-resolution. The method mainly uses the local binary pattern(LBP) texture feature of the original image to classify and recognize them, and uses the corresponding category dictionary of low-resolution to reconstruct the super-resolution image. The advantage of the method is speeding up the reconstruction and effectively improving the quality of the reconstruction image. The experimental result shows the superiority of this method compared with the traditional method.

【基金】 国家自然科学基金(61273251);民用航天技术预研项目
  • 【文献出处】 航天返回与遥感 ,Spacecraft Recovery & Remote Sensing , 编辑部邮箱 ,2015年06期
  • 【分类号】TP751
  • 【被引频次】5
  • 【下载频次】230
节点文献中: 

本文链接的文献网络图示:

本文的引文网络