节点文献

SOFM神经网络的FY-3A/VIRR多光谱图像云相态反演方法

A Cloud Phase Retrieval Approach Based on SOFM Neural Network Using FY-3A/VIRR Multi-channel Images

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭晶杨春平叶玉堂饶长辉

【Author】 GUO Jing;YANG Chunping;YE Yutang;RAO Changhui;School of Optoelectronic Information,University of Electronic Science and Technology of China;Institute of Optics and Electronics, Chinese Academy of Sciences;

【机构】 电子科技大学光电信息学院中国科学院光电技术研究所

【摘要】 针对使用阈值方法反演云相态存在的不足,本文提出了一种基于Self-Organizing Feature Map(SOFM)神经网络的云相态反演方法。采用覆盖中国地域的Feng Yun-3A/Visible and Inf Rared Radiometer(FY-3A/VIRR)多光谱图像开展了云相态反演实验。实验结果表明:SOFM神经网络方法与K-means方法的结果具有较好的一致性,且SOFM神经网络方法反演云相态的准确性优于FY-3A业务产品。此外,SOFM神经网络方法反演云相态所需时间仅为FY-3A业务产品的约1/3。

【Abstract】 To address problems of cloud phase retrieval using the threshold method, a cloud phase retrieval approach based on Self-Organizing Feature Map(SOFM) neural network was proposed. Cloud phase retrieval experiments were conducted using Feng Yun-3A/Visible and Inf Rared Radiometer(FY-3A/VIRR) multi-channel images, which cover the China’s territory. Experiment results indicated that the results from the SOFM neural network approach and the K-means method have good consistency, and the retrieval accuracy of the SOFM neural network exceeds that of the FY-3A operational product. Additionally, retrieval time consumed by the SOFM neural network approach is only about one third of that of the FY-3A operational product.

【基金】 国家自然科学基金资助项目(11173008);中央高校基本科研业务费专项资金资助项目(103.1.2E022050205)
  • 【文献出处】 光电工程 ,Opto-Electronic Engineering , 编辑部邮箱 ,2015年12期
  • 【分类号】TP183;TP751
  • 【被引频次】2
  • 【下载频次】80
节点文献中: 

本文链接的文献网络图示:

本文的引文网络