节点文献
关于晶体制约定理的一个严格证明(英文)
A rigorous proof on the crystallographic restriction theorem
【摘要】 关于晶体制约定理,有必要研究和提出更加严格和完美的证明。不存在C5轴等价于不能够用相互之间无任何空隙的五边形填充满所有的空间。以这一观点为基础,本文利用纯粹的数学方法严格地证明了不存在晶体的C5和Cn(n≥7)对称轴,而允许存在1,2,3,4以及6重转动对称轴,从而证明了晶体的转动对称轴只能够存在C1,C2,C3,C4和C6。
【Abstract】 It is significant to find a more rigorous and satisfactory proof of the crystallographic restriction theorem. The inexistence of C5 axis of symmetry is equivalent of that pentagons are impossible to fill all the space with a connected array of pentagons. On the basis of this viewpoint, using a purely mathematical approach the paper rigorously proves that C5 and Cn(n≥7) axes of symmetry can not exist, and one-, two-, three-, four- and six-fold axes of rotational symmetry are allowable, therefore, the axes of symmetry of the crystal can merely exist C1, C2, C3, C4 and C6.
【Key words】 the crystallographic restriction theorem; pentagons; n-sided(n≥7) polygons; proper rotation;
- 【文献出处】 湖南文理学院学报(自然科学版) ,Journal of Hunan University of Arts and Science(Natural Science Edition) , 编辑部邮箱 ,2015年01期
- 【分类号】O711
- 【被引频次】1
- 【下载频次】28