节点文献

基于马尔可夫逻辑网的关联规则迁移学习

Association Rule Transfer Learning Based on Markov Logic Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张倩李海港李明程玉虎

【Author】 ZHANG Qian;LI Haigang;LI Ming;CHENG Yuhu;School of Information and Electrical Engineering,China University of Mining and Technology;

【机构】 中国矿业大学信息与电气工程学院

【摘要】 针对源领域和目标领域共享知识是规则、结构和逻辑等关联规则的情况,提出一种基于马尔可夫逻辑网的关联规则迁移学习方法.首先利用伪对数似然函数将源领域中马尔可夫逻辑网表示的知识迁移到目标领域中,建立两个领域之间的关联;再通过对源领域进行自诊断、结构更新和目标领域搜索新子句,来优化映射得到的结构,进而适应目标领域的学习.实验结果表明,算法成功地映射了迁移知识,提高了学习模型的精确度.

【Abstract】 An association rule transfer learning method based on Markov logic networks is presented specific to the situation wherein shared knowledge between the source domain and the target domain is associated with knowledge containing rules,structure,and logic. Having applied this method by means of a pseudo log-likelihood function,the knowledge in the source domain expressed in a Markov logic network is transferred into the target domain while the link between the two domains is established. By means of a self-diagnosis and structure update in the source domain and a new clause surf in the target domain,the mapped structure is optimized so that it can be adapted to learning in the target domain. The experimental results show that the given algorithm successfully maps the transferred knowledge,and improves the precision of the learning model.

【基金】 国家自然科学基金资助项目(61273143);教育部新世纪优秀人才支持计划(NCET-10-0765);教育部高等学校博士学科点专项科研基金资助项目(20120095110025);江苏省自然科学基金资助项目(BK20130207)
  • 【文献出处】 信息与控制 ,Information and Control , 编辑部邮箱 ,2014年06期
  • 【分类号】TP181
  • 【被引频次】6
  • 【下载频次】265
节点文献中: 

本文链接的文献网络图示:

本文的引文网络