节点文献
参数型Littlewood-Paley算子在带非双倍测度Morrey空间上的有界性(英文)
Boundedness of Parametrized Littlewood-Paley Operators with Non-doubling Measures on Morrey Spaces
【摘要】 假定μ是仅满足一个增长条件的Radon测度,即存在一个正常数C使得对所有的x∈Rd,r>0以及对某个固定的n∈(0,d]都成立μ(B(x,r))≤Crn.对适当的参数ρ和λ,证明了参数型g*λ函数M*,ρλ和参数型Marcinkiewicz积分Mρ在Morrey空间Mp q(k,μ)上是有界的.
【Abstract】 Let μ be a non-negative Radon measure on Rdwhich only satisfies the following growth condition that there exists a positive constant C such that μ(B(x,r)) ≤ Crnfor all x ∈ Rd,r > 0 and some fixed n ∈(0,d].We will prove that for suitable indexes ρ and λ the parametrized g?λfunction M?,ρλand Mρare bounded on Mpq(k,μ) spaces.
【关键词】 非双倍测度;
Morrey空间;
参数型Littlewood-Paley算子;
参数型Marcinkiewicz算子;
【Key words】 Non-doubling measures; Morrey space; Parametrized Littlewood-Paley Operators; Parametrized Marcinkiewicz integral;
【Key words】 Non-doubling measures; Morrey space; Parametrized Littlewood-Paley Operators; Parametrized Marcinkiewicz integral;
【基金】 Supported by the National Natural Science Foundation of China(11161044 and 11261055)
- 【文献出处】 新疆大学学报(自然科学版) ,Journal of Xinjiang University(Natural Science Edition) , 编辑部邮箱 ,2014年01期
- 【分类号】O177
- 【被引频次】1
- 【下载频次】53