节点文献
Microstructure and Wear Performance of High Volume Fraction Carbide M7C3 Reinforced Fe-based Composite Coating Fabricated by Plasma Transferred Arc Welding
【摘要】 The fabrication of high volume fraction(HVF) M7C3(M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc(PTA) welding was studied. The results showed that the volume fraction of carbide M7C3 was more than sixty percent, and the relative wear resistance of the coating tested on a block-on-ring dry sliding tester at constant load(100 N) and variable loads(from 100 to 300 N) respectively was about 9 and 14 times higher than that of non-reinforced α-Fe coating. In addition, under constant load condition the friction coefficients(FCs) of two coatings increased first and then decreased with increasing sliding distance. However, under variable loads condition the FCs of non-reinforced α-Fe based coating increased gradually, while that of HVF M7C3 reinforced coating decreased as the load exceeded 220 N. The worn surface of non-reinforced α-Fe based coating was easily deformed and grooved, while that of the HVF M7C3 reinforced coating was difficult to be deformed and grooved.
【Abstract】 The fabrication of high volume fraction(HVF) M7C3(M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc(PTA) welding was studied. The results showed that the volume fraction of carbide M7C3 was more than sixty percent, and the relative wear resistance of the coating tested on a block-on-ring dry sliding tester at constant load(100 N) and variable loads(from 100 to 300 N) respectively was about 9 and 14 times higher than that of non-reinforced α-Fe coating. In addition, under constant load condition the friction coeffi cients(FCs) of two coatings increased fi rst and then decreased with increasing sliding distance. However, under variable loads condition the FCs of non-reinforced α-Fe based coating increased gradually, while that of HVF M7C3 reinforced coating decreased as the load exceeded 220 N. The worn surface of non-reinforced α-Fe based coating was easily deformed and grooved, while that of the HVF M7C3 reinforced coating was diffi cult to be deformed and grooved.
【Key words】 high volume fraction; M7C3; coatings; wear performance; PTA welding;
- 【文献出处】 Journal of Wuhan University of Technology(Materials Science Edition) ,武汉理工大学学报(材料科学版)(英文版) , 编辑部邮箱 ,2014年05期
- 【分类号】TG174.4;TG456.2
- 【被引频次】4
- 【下载频次】67