节点文献
具有潜伏期和体液免疫应答的病毒感染模型的稳定性分析
Stability Analysis of a Virus Infection Model with Latent Period and Humoral Immune Response
【摘要】 研究了一类具有潜伏期和体液免疫应答的病毒感染模型的动力学性质.利用Lyapunov泛函和LaSalle不变集原理,对模型的未感染平衡点全局稳定性进行了分析,对体液免疫未激活和体液免疫已激活的感染平衡点给出了全局渐近稳定的充分条件.推广了Bonhoefler(1997)和Nowak(2000)等的工作,获得了一些新结果.
【Abstract】 In this paper,dynamic property about a virus infection model with latent period and humoral immune response is studied.By using Lyapunov functionals and LaSalle invariance principle,the global stability of the infection-free equilibrium is analyzed,and thesufficient conditions of global asymptotical stability of the humoral immunity-absent infection equilibrium and humoral immunity-present infection equilibrium are obtained.The result we obtained here generalized the result of Bonhoeffer(1997)and Nowak(2000)et al,some new results obtained.
【关键词】 病毒感染模型;
体液免疫应答;
时滞;
平衡点;
全局稳定性;
【Key words】 Virus infection model; Humoral immune response; Time delay; Equilibrium; Global stability;
【Key words】 Virus infection model; Humoral immune response; Time delay; Equilibrium; Global stability;
- 【文献出处】 生物数学学报 ,Journal of Biomathematics , 编辑部邮箱 ,2014年03期
- 【分类号】O175
- 【被引频次】1
- 【下载频次】94