节点文献

基于相关向量机的高光谱图像噪声评估算法

Noise estimation algorithm based on relevance vector machine for hyperspectral imagery

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王晓飞侯传龙阎秋静张钧萍汪爱华

【Author】 Wang Xiaofei;Hou Chuanlong;Yan Qiujing;Zhang Junping;Wang Aihua;Beijing Twenty-First Century Science&Technology Development Co.Ltd;Key Laboratory of Electronic Enginerring,College of Heilongjiang Province,Heilongjiang University;Department of Information Engineering,Harbin Institute of Technology;Twenty First Century Aerospace Technology Co.Ltd;

【机构】 北京二十一世纪科技发展有限公司黑龙江大学黑龙江省普通高等电子工程重点实验室哈尔滨工业大学信息工程系二十一世纪空间技术应用股份有限公司

【摘要】 为了更准确的估计高光谱图像噪声强度,提出了一种基于相关向量机(RVM)的高光谱图像噪声评估算法。对该算法所采用的RVM回归原理、残差与噪声的关系等进行了研究。首先,介绍了高光谱图像噪声评估中应用较为广泛的空间/光谱维去相关法的特点及不足。接着,对可有效进行非线性回归分析的RVM进行了介绍。然后,针对传统的空间/光谱维去相关法在系统中存在较强的非线性关系时,得到的残差将会过大这一问题,提出利用RVM回归分析去除具有高相关性的信号,利用得到的残差图像对噪声进行估算,从而提高评估系统的稳定性。实验结果表明:噪声强度估计精度优于8%;相比传统算法更有效。总体看,该算法可以满足自动高光谱图像噪声评估的稳定可靠、精度高等要求。

【Abstract】 In order to more accurately estimate noise intensity for hyperspectral imagery,the paper proposed a noise estimation algorithm based on relevance vector machine(RVM)for hyperspectral imagery.And the algorithm that used RVM regression,residuals and noise was studied.First of all,this paper introduced the characteristics and shortage of spatial/spectral dimension decorrelation in noise estimation that used widely nowadays for hyperspectral imagery.Then,the nonlinear regression analysis of RVM was introduced.And the residuals will be too large,when there was a strong nonlinear correlation in the system for spatial/spectral dimension decorrelation.To this problem,the paper proposed a new method that used RVM regression to remove strong signal correlation and used the residual images to estimate the noise,so as to improve the stability of the assessment system.Experimental results indicate that the precision of the noise intensity is better than 8%,and show that the method is more effective compared to the traditional method.It concludes that the RVM can satisfy the system requirements of higher precision and stabilization in noise estimation for automatic hyperspectral imagery.

【基金】 国家自然科学基金(61273148);北京市博士后工作经费资助项目(2012ZZ-100);北京市科技计划(Z121100006112032);黑龙江省普通高等电子工程重点实验室项目(D22D20100018)
  • 【文献出处】 红外与激光工程 ,Infrared and Laser Engineering , 编辑部邮箱 ,2014年12期
  • 【分类号】TP391.41
  • 【被引频次】8
  • 【下载频次】169
节点文献中: 

本文链接的文献网络图示:

本文的引文网络