节点文献

基于邻域极值数的协同粒子群优化算法

Cooperative Particle Swarm Optimization Based on Neighborhood Extremum Number

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曾毅朱旭生廖国勇

【Author】 Zeng Yi;Zhu Xusheng;Liao Guoyong;School of Basic Sciences, East China Jiaotong University;

【机构】 华东交通大学理学院

【摘要】 提出了一种基于邻域极值数的协同粒子群优化算法。该算法将种群分为若干个独立进化的子种群。根据邻域极值数确定各子种群的生存状态。根据子种群的生存状态对子种群实施相应的控制操作,提高子种群的搜索能力,实现子种群之间的信息共享,共同进化。测试结果表明基于邻域极值数的协同粒子群优化算法是一种高效稳健的全局优化算法。

【Abstract】 A cooperative particle swarm optimization based on the neighborhood extremum number is proposed. In this algorithm, the whole population is divided into several sub-populations evolving independently. The survival state of each sub-population is determined in terms of the neighborhood extremum number. Based on the survival state of each sub-population, corresponding control operation is implemented so as to improve the search ability of each sub-population and realize information sharing so that the sub-populations coevolve. The experimental results show that the cooperative particle swarm optimization based on the neighborhood extremum number is an effective and steady global optimization algorithm.

【基金】 国家自然科学基金项目(11161021);华东交通大学校立科研项目(09111114)
  • 【文献出处】 华东交通大学学报 ,Journal of East China Jiaotong University , 编辑部邮箱 ,2014年04期
  • 【分类号】TP18
  • 【被引频次】2
  • 【下载频次】46
节点文献中: 

本文链接的文献网络图示:

本文的引文网络