节点文献

基于遗传算法工具箱的插铣切削力的预测模型

Prediction of Cutting Force in Plunge Milling using Genetic Algorithm Toolbox

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 翟元盛张吉军胡静姝李玉甫

【Author】 Zhai Yuansheng;Zhang Jijun;Hu Jingshu;Li Yufu;

【机构】 哈尔滨理工大学"高效切削及刀具"国家地方联合工程实验室黑龙江八一农垦大学

【摘要】 根据插铣核电材料A508-3钢各向最大切削力的正交实验数据,建立插铣过程的切削参数(切削速度、每齿进给量和径向切削宽度)各向最大切削力预测模型。把切削力预测值与实验值的残差平方和为适合度函数,采用谢菲尔大学研究的遗传算法工具箱实现各向最大切削力预测模型的各项参数。结果表明切削力预测模型与实验值吻合较好。本文目的是在特定插铣切削参数条件下预测切削力。

【Abstract】 Based on the plunge milling nuclear material A508- 3 steel experimental results of the maximum cutting force,a predictive model with cutting parameters( cutting speed,feed per tooth and radial cutting width) is established. The residual sum of squares( RSS) is takes as fitness function. Force prediction and experimental forces of the residual sum of squares( RSS) takes as the fitness function,genetic algorithm toolbox sheffield university is used to study the maximum cutting force prediction model parameters of plunge milling. The results showed that the cutting force prediction model is in good agreement with the experimental values. The purpose of this paper is to predict the cutting force in the cutting parameters under the particular conditions of the plunge milling.

【基金】 黑龙江教育厅科学技术研究项目:核电材料高效插铣力学建模及有限元分析(12511090)
  • 【分类号】TG54
  • 【被引频次】12
  • 【下载频次】134
节点文献中: 

本文链接的文献网络图示:

本文的引文网络