节点文献

基于主成分分析法的茶叶特征性指标分类

PCA-based Classification of Characteristic Indicators of Tea

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李志伟

【Author】 LI Zhi-wei;Institute of Mechanical Engineering,South East University;

【机构】 东南大学机械工程学院工业工程系

【摘要】 在对常见茶叶进行调查统计的基础上,运用主成分分析的方法,对样本的特征性指标进行分类分析。分析结果表明,茶叶的特征性指标主要由钾、钙、磷、蛋白质组成;钾与钙为同一类指标,磷为一类指标,蛋白质也是一类指标。该特征性指标分类基本合理,对茶叶的质量控制及其质量检验部门的初步检测等都具有一定的指导作用,可减少检测步骤、提高检测效率、节约检测成本,为选用步骤少、效率高、低成本的检测对象来反映茶叶质量提供了理论依据。

【Abstract】 On the basis of survey and statistics of common types of tea and using principal component analysis(PCA) method,this paper analyzed characteristic indicators of the sample tea. The classification analysis and results showed that: the tea is characterized mainly by the indicator of potassium,calcium,phosphorus,and protein composition; potassium and calcium are the same categories of indicators; phosphorus is Class I indicator; protein is also Class I indicator. Thus,this classification of characteristic indicators is basically correct and reasonable,and will have certain guidance in quality control and preliminary test of tea quality inspection authorities,reduce the detection step,improve the detection efficiency,save testing cost and provide a theoretical basis for selecting less-step cost-effective detection object to reflect quality of tea.

  • 【文献出处】 安徽农业科学 ,Journal of Anhui Agricultural Sciences , 编辑部邮箱 ,2014年07期
  • 【分类号】S571.1
  • 【被引频次】8
  • 【下载频次】223
节点文献中: 

本文链接的文献网络图示:

本文的引文网络