节点文献

基于广义逆非负矩阵分解的无线传感器网络节能通信

Wireless sensor networks energy-efficient communication using generalized inverse nonnegative matrix factorization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 仵博吴敏

【Author】 WU Bo1,2,3,WU Min1,2(1.School of Information Science and Engineering,Central South University,Changsha 410083,China;2.Hunan Engineering Laboratory for Advanced Control and Intelligent Automation,Changsha 410083,China;3.Education Technology and Information Center,Shenzhen Polytechnic,Shenzhen 518055,China)

【机构】 中南大学信息科学与工程学院先进控制与智能自动化湖南省工程实验室深圳职业技术学院教育技术与信息中心

【摘要】 针对无线传感器网络中通信数据的高维、高冗余现象,基于高维空间往往可以由其低维来本质表示这一特性,提出一种基于广义逆非负矩阵分解的无线传感器网络节能通信(giNMF)算法。首先,采用奇异值分解方法对原始通信数据矩阵进行初始化操作,求出其对应的特征空间;然后,采用非负矩阵分解方法对奇异值分解后的矩阵进行降维操作,利用乘法更新法快速求解出最终降维结果。仿真实验结果表明:giNMF算法能够对通信数据进行有效压缩,从而降低通信能耗,延长网络生命周期,达到节能的目的。

【Abstract】 In order to solve the dilemma of the high-dimensional and high-redundant communication data in wireless sensor networks(WSNs),based on the fact that low-dimensional manifold of plausible space embedded in the high-dimensional space,novel algorithm(giNMF) using generalized inverse nonnegative matrix factorization was proposed for energy-efficient communication in WSNs.Firstly,a singular value decomposition(SVD) method was employed to initialize the original communication data matrix,and the corresponding feature space was found.Then,the nonnegative matrix factorization(NMF) approach was adopted to reduce dimensions of the matrix decomposed by SVD into lower dimensions,and the multiplication update law was used quickly to acquire the final dimension reduction results.The numerical results show that giNMF has its effectiveness in compressing the communication data,so as to reduce the communication energy consumption and prolong the network lifetime,and finally to achieve the goal of energy saving.

【基金】 国家自然科学基金资助项目(61074058,60874042)
  • 【文献出处】 中南大学学报(自然科学版) ,Journal of Central South University(Science and Technology) , 编辑部邮箱 ,2013年04期
  • 【分类号】TN929.5;TP212.9
  • 【被引频次】5
  • 【下载频次】245
节点文献中: 

本文链接的文献网络图示:

本文的引文网络