节点文献
行简化幂等矩阵与线性方程组标准通解
Row-reduced Idempotent Matrix and the Canonical General Solution of the Linear Equations Systems
【摘要】 给出了行简化幂等矩阵的定义,证明了给定n阶方阵A与唯一的行简化幂等矩阵AD行等价,因此A可分解为可逆矩阵与唯一的行简化幂等矩阵的乘积.作为应用不仅指出了对给定的m×n阶矩阵A所确定的广义行简化幂等矩阵是唯一的,而且得到了非齐次线性方程组Ax=d标准通解的显示矩阵.
【Abstract】 The definition of row-reduced idempotent matrix is proposed,and we prove that the given n×n matrix A is row equivalent with the uniqueness of the row-reduced idempotent matrix AD,therefore,the matrix A can decompose into the product of an invertible matrix and an uniqueness of the row-reduced idempotent matrix.As the application of the results,it not only proves the uniqueness of generalized row-reduced idempotent matrix for given m×n matrix A which determined,but also helps to get the display matrix of the canonical general solution of the systems of nonhomogeneous linear equations Ax=d.
【Key words】 row elementary operation; row-reduced echlon form; line reduced idempotent matrix; uniqueness; canonical general solution;
- 【文献出处】 北华大学学报(自然科学版) ,Journal of Beihua University(Natural Science) , 编辑部邮箱 ,2013年03期
- 【分类号】O151.21
- 【被引频次】1
- 【下载频次】98