节点文献

基于隐含主题模型的异常行为分析

Abnormal behavior analysis based on latent topic model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵龙郭立谢锦生刘皓陆海先

【Author】 ZHAO Long,GUO Li,XIE Jin-Sheng,LIU Hao,LU Hai-Xian(Department of Electronic Science and Technology,University of Science and Technology of China,Hefei 230026,China)

【机构】 中国科学技术大学电子科学与技术系

【摘要】 针对目前多数异常行为分析方法没有考虑场景,提出一种基于隐含主题模型的异常行为分析方法.提取场景的颜色和纹理特征,利用K-means对特征聚类,形成视觉单词,利用pLSA模型将视觉单词分为若干语义主题区域,生成场景描述.组合轨迹特征与场景语描述,生成组合特征向量,再利用CRF对组合特征向量建模,通过训练估计模型参数,利用模型推断,分析异常行为.实验表明,本文方法对特定场景的异常行为可以较为准确地分析.

【Abstract】 Considering that most of abnormal behavior analysis methods do not consider the scene,we propose a method of abnormal behavior analysis based on latent topic model.Features of the scene are extracted and clustered to visual vocabulary by K-means.The visual vocabulary is divided into semantic topics to describe the scene by pLSA model.The descriptions for the scene and trajectory are combined to form feature vector which is modeled by CRF.Parameters of the CRF model are estimated by training,and abnormal behavior is analyzed by inference.The experiments show that abnormal behavior in a particular scene is accurately analyzed by this method.

【基金】 国家自然科学基金(61071173)资助
  • 【文献出处】 中国科学院研究生院学报 ,Journal of Graduate University of Chinese Academy of Sciences , 编辑部邮箱 ,2013年03期
  • 【分类号】TP391.41
  • 【被引频次】2
  • 【下载频次】159
节点文献中: 

本文链接的文献网络图示:

本文的引文网络