节点文献
Effects of rapid thermal annealing on the morphology and optical property of ultrathin InSb film deposited on SiO2/Si substrate
【摘要】 Ultrathin InSb films on SiO2/Si substrates are prepared by radio frequency(RF) magnetron sputtering and rapid thermal annealing(RTA) at 300,400,and 500℃,respectively.X-ray diffraction(XRD) indicates that InSb film treated by RTA at 500℃,which is higher than its melting temperature(about 485℃),shows a monocrystalline-like feature.A high-resolution transmission electron microscopy(HRTEM) micrograph shows that melt recrystallization of InSb film on SiO2/Si(111) substrate is along the(111) planes.The transmittances of InSb films decrease and the optical band gaps redshift from 0.24 eV to 0.19 eV with annealing temperature increasing from 300℃ to 500℃,which is indicated by Fourier transform infrared spectroscopy(FTIR) measurement.The observed changes demonstrate that RTA is a viable technique for improving characteristics of InSb films,especially the melt-recrystallized film treated by RTA at 500℃.
【Abstract】 Ultrathin InSb films on SiO2/Si substrates are prepared by radio frequency(RF) magnetron sputtering and rapid thermal annealing(RTA) at 300,400,and 500℃,respectively.X-ray diffraction(XRD) indicates that InSb film treated by RTA at 500℃,which is higher than its melting temperature(about 485℃),shows a monocrystalline-like feature.A high-resolution transmission electron microscopy(HRTEM) micrograph shows that melt recrystallization of InSb film on SiO2/Si(111) substrate is along the(111) planes.The transmittances of InSb films decrease and the optical band gaps redshift from 0.24 eV to 0.19 eV with annealing temperature increasing from 300℃ to 500℃,which is indicated by Fourier transform infrared spectroscopy(FTIR) measurement.The observed changes demonstrate that RTA is a viable technique for improving characteristics of InSb films,especially the melt-recrystallized film treated by RTA at 500℃.
【Key words】 XOI; solid-phase recrystallization; rapid thermal annealing;
- 【文献出处】 Chinese Physics B ,中国物理B , 编辑部邮箱 ,2013年02期
- 【分类号】O484
- 【被引频次】1
- 【下载频次】42