节点文献
求解TSP问题的混合杂草优化算法
Hybrid Invasive Weed Optimization Algorithm to Solve Traveling Salesman Problem
【摘要】 根据组合优化问题的特点,提出一种离散混合杂草优化算法来解决旅行商问题,通过对算法中正态分布于父代周围的子代进行离散化分析,并引入遗传操作中的单点顺序交叉法和对换变异法,从而有效防止了算法的早熟收敛。计算机仿真结果表明,离散混合杂草优化算法相对于基本粒子群算法具有更好的性能。
【Abstract】 Weeds optimization algorithm(IWO) is a very innovative and efficient global optimization algorithm, this algorithm simulates natural behavior of weeds cloning and reproduction, which has advantage of good robustness, adaptive and randomness characteristics. A discrete hybrid invasive weed optimization algorithm(DHIWO) is designed to tackle the traveling salesman problem(TSP). Based on the characteristics of combinatorial optimization problem, this paper disperses the distribution of the offspring. In order to restrain premature stagnation, single point ordered and swap mutation operator of the genetic algorithm are applied to the new algorithm. The experiment results show that the algorithm,with the smaller populations and the fewer number of iterations, can produce good results, compared with the particle swarm optimization algorithm for TSP.
【Key words】 discrete hybrid invasive weed optimization algorithm; traveling salesman problem(TSP); combinatorial optimization; dormal distribution;
- 【文献出处】 振动.测试与诊断 ,Journal of Vibration, Measurement & Diagnosis , 编辑部邮箱 ,2013年S1期
- 【分类号】TP301.6
- 【被引频次】12
- 【下载频次】168