节点文献
P-version间断有限元方法求解奇异摄动问题
P-version Discontinuous Finite Element Method for a Singularly Perturbed Problem
【摘要】 主要讨论用p-version间断有限元方法(DG)求解一维奇异摄动反应扩散问题。证明了数值解的存在唯一性,并给出了相应的数值算例.数值结果表明,与h-version DG方法相比较,为了达到同样数量级的误差,p-version DG方法的自由度大大下降,并且具有指数收敛性。
【Abstract】 This paper focuses on the p-version discontinuous Galerkin finite element method(DG) for solving an one-dimensional singularly perturbed reaction-diffusion problem.The uniqueness and existence of the numerical solution is proved and some numerical examples are given.The numerical results show that,compared with the h-version DG method,the freedom of our p-version DG approach decreases greatly when the same error is attained.Furthermore,our approach can converge exponentially.
【关键词】 p-version间断有限元;
奇异摄动反应扩散问题;
指数收敛;
【Key words】 P-version discontinuous finite element; Singularly perturbed reaction-diffusion problem; Exponential convergence;
【Key words】 P-version discontinuous finite element; Singularly perturbed reaction-diffusion problem; Exponential convergence;
【基金】 国家自然科学基金资助项目(11171104);贵州省科学技术基金资助项目(LKS[2010]05)
- 【文献出处】 云南师范大学学报(自然科学版) ,Journal of Yunnan Normal University(Natural Sciences Edition) , 编辑部邮箱 ,2013年01期
- 【分类号】O241.82
- 【被引频次】2
- 【下载频次】65