节点文献

基于智能手机群的车辆事故自救系统

Vehicle Accident Self-Rescue System Based on Smart Mobile Phone Groups

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵龙闵昆龙韩玉杰

【Author】 ZHAO Long1,MIN Kun-Long2,HAN Yu-Jie2 1(College of Electrical Engineering and Computer Science,East University of Heilongjiang,Harbin 150086,China) 2(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China)

【机构】 黑龙江东方学院计算机科学与电气工程学院东北林业大学机电工程学院

【摘要】 针对目前现有汽车事故自救系统需要装配特定的传感器、GPS及通信模块的缺点,设计了一种基于智能手机群的自动碰撞与坠落检测及事故自救系统.该系统以事故车内多部智能手机用户物理运动的加速度信号为输入样本,以多个加速度数据为依据计算阀值,不但使得事故判断的准确度显著提高还降低了严重事故时单个车载装置或手机损毁无法实现呼救可能性.当信号超过阀值后,自动借助手机的拍照、GPS定位、3G联网功能实现向救援中心报警求救.在Android平台实现原型系统.实验结果表明,该系统具有非常好的碰撞及坠落识别准确度,且具备能耗小和成本低等优点.

【Abstract】 Considering the deficiency that the existing automobile accident self-rescue system requires to assemble the specific sensor,GPS and communication module,the author designed a vehicle collision or crash detection and accident self-rescue system based on the smart mobile phone groups.Taking the acceleration signals of physical moments from the smart mobile phones in the accidents car as the input samples and the assembly of acceleration data as the calculating thresholds,the system can not only improve the accuracy rating of the judgments about the accidents,but can also reduce the unusable distress signals due to the damages to individual vehicle-borne device or mobile phone in severe accidents.When the signals exceed the threshold value,the system can draw support from the functions of video,GPS positioning and 3G networking in the mobile phones automatically to call for help from the rescue centre.Meanwhile,a prototype system has been implemented on Android platform.The results of the experiments indicate that the system possesses the advantages of high accuracy of collision or crash recognition,low energy consumption and low cost.

【基金】 黑龙江省教育厅科学技术研究项目(11553077)
  • 【文献出处】 计算机系统应用 ,Computer Systems & Applications , 编辑部邮箱 ,2013年02期
  • 【分类号】TN929.53
  • 【被引频次】10
  • 【下载频次】108
节点文献中: 

本文链接的文献网络图示:

本文的引文网络