节点文献

基于量子遗传算法的删余卷积码搜索

Searching punctured convolutional codes based on quantum genetic algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邹卫霞王桂叶王振宇杜光龙高英

【Author】 Zou Weixia;Wang Guiye;Wang Zhenyu;Du Guanglong;Gao Ying;Wireless Network Lab,Beijing University of Posts and Telecommunication;School of Electronic Engineering,Beijing University of Posts and Telecommunication;

【机构】 北京邮电大学泛网无线通信教育部重点实验室北京邮电大学电子工程学院

【摘要】 针对采用计算机穷举法进行删余卷积码好码搜索无法满足更高码率和更大约束长度的问题,提出一种基于量子遗传算法快速搜索删余卷积码好码的方法.通过量子比特编码和量子旋转门更新等方式实现适应度函数的优化求解,得到删余卷积码好码的生成多项式和删余矩阵.搜索结果表明,与计算机穷举法相比,该方法不仅收敛速度快,且灵活性较好.

【Abstract】 Currently,the search of good punctured convolutional code( PCC) is mainly based on exhaustive search. Nevertheless,the computational complexity of exhaustive search increases exponentially as the number of encoder’s input or the constraint length increases. Therefore,the use of exhaustive search codes is limited in cases of with high bit rates and great constraint lengths. To solve the problem,a new method based on quantum genetic algorithm is proposed for searching good PCCs. The new method optimizes the fitness function through quantum bits encoding and quantum revolving door updating. The experimental results show that the proposed method not only converges quickly but also has good flexibility when compared to exhaustive search.

【基金】 国家自然科学基金资助项目(61171104);中央高校基本科研业务费专项资金资助项目(G470712)~~
  • 【文献出处】 深圳大学学报(理工版) ,Journal of Shenzhen University Science and Engineering , 编辑部邮箱 ,2013年06期
  • 【分类号】TN911.22
  • 【被引频次】5
  • 【下载频次】61
节点文献中: 

本文链接的文献网络图示:

本文的引文网络