节点文献
非线性Kirchhoff型波动方程解的真空隔离(英文)
Vacuum Isolating of Solutions for the Nonlinear Wave Equations of Kirchhoff Type
【摘要】 本文研究初边值问题其中Ω是Rn中的有界区域,A=-△是定义在A=-△上的Laplace算子.利用位势井方法得到了解的存在性定理,并且证明了当e∈(0,d)时,以E(0)∈(0,e]为初始能量的所有解只能位于空间D(A1/2)中小球的外部和大球的内部,其中,C*是空间D(A1/2)到Lp+1(Ω)的嵌入常数.
【Abstract】 In this paper,the initial boundary value problem is studied,where Ω C RN is a bounded domain,A =-△ is the Laplace operator with the domain D(A) = H2(Ω)∩H01(Ω).By using the potential well method,one obtains some existence theorems of solutions,and proves that for any given e ∈(0,d) all solutions with initial energy E(0) ∈(0,e]can only lie either inside of some smaller ball or outside of some bigger ball of space D(A1/2),where d=(?)and C,is the imbedding constant from D(A1/2) into Lp+1(Ω).
【关键词】 Kirchhoff型波动方程;
真空隔离;
位势井;
【Key words】 wave equations of Kirchhoff type; vacuum isolating; potential well;
【Key words】 wave equations of Kirchhoff type; vacuum isolating; potential well;
【基金】 This work is supported by NSFC(No.11271336)
- 【文献出处】 数学进展 ,Advances in Mathematics , 编辑部邮箱 ,2013年04期
- 【分类号】O175
- 【下载频次】28