节点文献

缺资料地区农村面源污染评估方法研究

Study on Rural Non-point Source Pollution Assessment Method of Regions with Sparse Data

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张洪波李俊黎小东刘星陈欣刘娟敖天其

【Author】 ZHANG Hong-bo;LI Jun;LI Xiao-dong;LIU Xing;CHEN Xin;LIU Juan;AO Tian-qi;College of Water Resources and Hydropower,Sichuan Univ.;State Key Lab. of Hydraulics and Mountain River Eng.,Sichuan Univ.;Faculty of Electric Power Eng.,Kunming Univ. of Sci. and Technol.;Planning and Design Branch,Yunnan Provincial Water Conservancy and Hydropower Survey and Design Inst.;City College,Kunming Univ. of Sci. and Technol.;

【机构】 四川大学水利水电学院四川大学水力学与山区河流开发保护国家重点实验室昆明理工大学电力学院云南省水利水电勘测设计研究院规划分院昆明理工大学城市学院

【摘要】 为了解决缺资料地区的农村面源污染难以定量模拟和综合评估的问题,将输出系数法(the export coefficient model)和源强系数法(source strength coefficient method)进行联合,建立了一套简单、实用的农村面源(非点源)污染评估方法。结合文献和研究区——濑溪河流域(泸县境内部分)的调查数据提出相应的模型系数,进行研究区的农村面源污染评估,得到研究区主要污染类型、主要污染物、主要污染源、重点治理乡镇以及各镇主要污染源,同时,根据该评估结果提出水污染治理对策建议。结果表明,所提出的方法适用于缺资料地区的农村面源污染评估。

【Abstract】 In order to resolve the difficulty of the quantitative simulation and integrated assessment of rural non-point sources pollution( RNPSP) in regions with sparse data,a simple and practical RNPSP assessment method was developed by combining the export coefficient model( ECM) and source strength coefficient method( SSCM). The corresponding coefficients were selected based on the analysis of the literatures and field survey data. This method and the coefficients were applied to the RNPSP assessment for the Laixi River basin( the part within the Lu county,Sichuan,China),a region with sparse data for coefficient calibration,and the assessments of the dominant pollution source type,key pollutants and key pollution sources of the study area,key towns for pollution treatment,and key pollution sources for each town were obtained. Finally,reasonable and practical suggestions were proposed for the water pollution treatment according to the assessment results. The results showed that the proposed method can be applied to the RNPSP assessment for the regions with sparse data.

【基金】 国家自然科学基金面上资助项目(50979062);国家科技部国际合作项目(2012DFG21780);四川省环境保护厅科技项目(11HBT-01);四川大学国家基本科研业务费项目(2010SCU22005)
  • 【文献出处】 四川大学学报(工程科学版) ,Journal of Sichuan University(Engineering Science Edition) , 编辑部邮箱 ,2013年06期
  • 【分类号】X501
  • 【被引频次】33
  • 【下载频次】712
节点文献中: 

本文链接的文献网络图示:

本文的引文网络