节点文献

基于模糊聚类的支持向量机在振动故障诊断中的运用

Application of Support Vector Machines Based on the Fuzzy Clustering for Fault Diagnosis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 朱晓东倪秋华

【Author】 ZHU Xiao-dong;NI Qiu-hua;National Engineering Research Center of Turbo-generator Vibration,Southeast University;

【机构】 东南大学火电机组振动国家工程研究中心

【摘要】 提出了一种基于模糊聚类的支持向量机算法,构建了适用于故障诊断的模糊支持向量机分类器,并把该算法运用到汽轮发电机组振动故障诊断中。对实验数据进行故障模式识别验证,结果表明该方法与传统的SVM方法相比,在保证分类器性能的前提下,可有效提高训练正确率。

【Abstract】 Combined the fuzzy clustering technology with support vector machine method,the new algorithm has applied to the vibration fault diagnosis.The fault diagnosis of fuzzy support vector machines algorithm has reduced the structure and complexity of support vector machine classifier,and has also reduced the number of 2-class classifier.The simulation results have showed that the diagnosis accuracy was increased by the algorithm with the guarantee of classifier’s performance.

  • 【文献出处】 汽轮机技术 ,Turbine Technology , 编辑部邮箱 ,2013年03期
  • 【分类号】TK268
  • 【被引频次】1
  • 【下载频次】111
节点文献中: 

本文链接的文献网络图示:

本文的引文网络