节点文献

基于Delaunay细分的旋转对称模型最优对称单元的构造

Optimal symmetry cell construction for rotational symmetry model based on Delaunay refinement

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曹伟娟李明高曙明

【Author】 CAO Wei-juan,LI Ming,GAO Shu-ming(State Key Laboratory of CAD &CG,Zhejiang University,Hangzhou 310027,China)

【机构】 浙江大学CAD&CG国家重点实验室

【摘要】 为了最大限度地提高有限元分析的效率,提出一种基于Delaunay细分构造旋转对称模型的最优对称单元的方法。该方法把对称单元及其网格的构造统一起来,通过一种带对称约束的局部Delaunay细分算法直接生成对称单元网格。其关键是在细分过程中增添移动三角形操作,由此可将对称边转化为内部边,从而能够对其进行翻转来维护其Delaunay属性,并可保持对称边界的一致性。细分结束后得到的局部网格就是所要求的最优对称单元网格。理论证明与实验结果均表明该方法是有效的。

【Abstract】 To maximize the efficiency of finite element analysis,a Delaunay refinement based method was proposed to construct optimal symmetry cells for rotational symmetric models.In this method,the construction of symmetry cell and its mesh was synchronized to generate the symmetry cell mesh directly by a symmetry-constrained local Delaunay refinement algorithm,which was achieved by introducing moving triangles into the Delaunay refinement process.Thus,symmetry boundary edges were changed into interior edges to maintain their Delaunay properties and to retain the consistency of the symmetry boundary.The locally constructed mesh after the refinement was the desired symmetry cell mesh.Both theoretical proof and experimental results demonstrated the effectiveness of this method.

【基金】 国家自然科学基金资助项目(60736019)~~
  • 【文献出处】 计算机集成制造系统 ,Computer Integrated Manufacturing Systems , 编辑部邮箱 ,2013年07期
  • 【分类号】TP391.7
  • 【被引频次】1
  • 【下载频次】77
节点文献中: 

本文链接的文献网络图示:

本文的引文网络