节点文献

一种带差分局部搜索的改进型NSGA2算法

Improved NSGA2 Algorithm with Differential Evolution Local Search

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 谢承旺李凯廖国勇

【Author】 XIE Cheng-wang;LI Kai;LIAO Guo-yong;School of Software,East China Jiaotong University;School of Basic Science,East China Jiaotong University;

【机构】 华东交通大学软件学院华东交通大学基础科学学院

【摘要】 NSGA2算法以其Pareto支配的选择模式并辅以解个体密度估计算子选择胜出解的策略而成为了现代多目标进化算法的典范,但是该算法通过计算解个体的聚集距离来保持群体的分布性的机制存在一定的缺陷。鉴于此,提出了一种带差分局部搜索的改进型NSGA2算法。新算法利用差分进化中变异算子的定向引导作用,抽取其中的差分向量,并与NSGA2算法结合以改善解群的分布性。仿真实验表明:新算法较NSGA2算法在解群分布的均匀性和广度上有明显的改善。此外,新算法在时间复杂性方面与经典的NSGA2算法相当。

【Abstract】 NSGA2 algorithm with its selection mode of Pareto dominate method and the strategy of using individual density estimation operator of solution to select winning solution becomes the model of modern multi-objective evolutionary algorithm,but the algorithm by computing the solution of individual crowding distance to keep the population distribution mechanisms has certain defects.In view of this,this paper proposed a kind of improved algorithm which takes differential local search with NSGA2 algorithm.The new algorithm uses the differential evolution mutation operator in directional guiding ideology,takes the difference vector,and combines the NSGA2 algorithm to improve the solution population distribution.Simulation results show that the new algorithm compared with the NSGA2 algorithm in the solution of cluster distribution uniformity and depth is improved obviously.In addition,the new algorithm in the time complexity is same as the classic NSGA2algorithm.

【关键词】 差分进化局部搜索NSGA2分布性
【Key words】 Differential evolutionLocal searchNSGA2Diversity
【基金】 国家自然科学基金(61165004);江西省自然科学基金(20114BAB201025);江西省教育厅科技项目(GJJ12307)资助
  • 【文献出处】 计算机科学 ,Computer Science , 编辑部邮箱 ,2013年10期
  • 【分类号】TP301.6
  • 【被引频次】42
  • 【下载频次】913
节点文献中: 

本文链接的文献网络图示:

本文的引文网络